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Chapter 1

Introduction

My project aimed to develop a speci�cation for a virtual machine (VM) which
can operate correctly when its implementation is incomplete and instructions
are missing from the full instruction set.

Missing instructions are emulated in terms of existing ones, using a method
that is invisible to both the VM implementer and the application program-
mer.

This is achieved by a carefully designed software layer in the VM byte-
code. It tests the underlying VM and builds up the full instruction set from
whatever instructions are available. Applications can then run correctly even
on minimal VM implementations, while running with the maximum possible
performance on more complete implementations.

I have successfully designed this VM, written implementations for a va-
riety of architectures, and demonstrated that it can correctly run a variety
of example programs. These include some written in Java and automatically
translated to be run in my VM. This ful�lls all the requirements of my pro-
posal, and extends it by providing an extra implementation � a hardware
machine written in Verilog.

1.1 Terminology

I have named the system the Salamander Virtual Machine (SVM) in homage
to the way that these creatures can grow back limbs that they are missing.

I will use the term VM to mean the abstract speci�cation of what a
machine must do (some might call this an abstract machine). Contrast this
with an actual program which can interpret programs written for a VM,
which I will always call an interpreter or an implementation.
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1.2 Motivation

Portability of programs across many platforms is an important property that
software designers seek, so that they can reach a wider market, and provide
better �exibility. One of the most successful techniques to achieve it is to
write for a VM, which then has an implementation available on many plat-
forms.

So people have produced VMs, for example the JVM and Microsoft's CLI,
which have proven successful. However, the designers of these VMs have had
to make a trade-o� between the run-time e�ciency of the VM and its cost to
implement. Because e�ciency is so important, the speci�cations have been
left complex.

Teams making hardware devices may be less inclined to implement a VM
for their device because of the time they would have to spend providing the
whole VM. It may be less costly to retarget the software they need, rather
than writing a VM implementation and using existing VM-targeted versions.

My idea is that it is useful to be able to implement an ine�cient VM
interpreter, at low cost, to start with, and to incrementally improve it. This
means that features that aren't initially provided are emulated using routines
written in the VM bytecode. This is exactly what is made possible by the
Salamander Virtual Machine.

1.3 Multiple paradigms

Building on the basic idea of half-implementing a VM, we can investigate
what makes it easy or hard to implement certain features of a programming
model. In fact, it isn't usually the individual instructions which are hard to
implement, but the memory paradigm within which they act. For example,
implementing a JVM requires a stack and a garbage collected heap to be
provided. The natural course for the SVM is therefore to allow you to provide
one of a variety of memory models, and let the SVM emulate the others.
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Chapter 2

Preparation

This chapter introduces the area of virtual machines, and documents how I
decided to approach the design of the SVM.

2.1 Existing work

Virtual machines themselves are not a new area of study. Systems as early
as BCPL's O-code [1] (�rst designed in 1966) used the idea to separate the
tasks of compiling programs and machine-speci�c implementation.

The JVM [2] has existed for some years, and is very widely used. It has
many features which I will not be attempting to reproduce, like threading,
remote method invocation and a vast library. It allows some degree of �exi-
bility, by underspecifying some aspects of the behaviour, for example whether
the threading is true multithreading or software.

The Sceptre extensible virtual machine [3] was a prototype system that
allowed the programmer to add extra instructions to the VM. However, it was
intended for the programmer to improve performance by controlling memory
allocation or just-in-time compilation, rather than simplify the interpreter.
It didn't allow instructions to be de�ned that used entirely di�erent memory
paradigms.

As far as I know there is no existing system which attempts to do the
same as the SVM in terms of allowing incomplete implementations of the
VM.

2.2 Project Planning

The task of designing the SVM requires a large number of small components.
The dependencies between these are shown in Figure 2.1. I've split the
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Figure 2.1: Project dependencies

tasks into those that would be distributable products, and the examples that
depend on them.

2.3 The design requirements of the SVM

This project required me to take on di�erent roles at di�erent stages:

1. The designer of the �exible system

2. The designer of instructions and memory models within it

3. The producer of an interpreter
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   Bytecode

Library

User 

Program

Interpreter

Figure 2.2: The structure of an SVM system

4. The programmer that writes for the system

The overriding design aim for the project is to make life easy for the third of
these, the producer of the interpreter. This leads to the following components
of a working SVM system:

• The interpreter

• The �library� part of the program, which contains emulation routines
for instructions in case they are missing, and logic for choosing how to
use them

• The program to be run

A key idea in this project is that I am abstracting what is required of an
interpreter from the other two components, as shown in Figure 2.2. Of
course, the other components are kept separate, but that's just good software
engineering practice, not the purpose of the project. Importantly, the library
and program are packaged together to be given to an interpreter.

2.3.1 Common execution model

It was necessary to have some common framework within which all the vari-
ous paradigms I planned to implement could coexist. For example, trying to
�nd a generalisation of both data-�ow and control-�ow programming styles
wouldn't really get anywhere, as the representation of programs is so di�er-
ent.
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I have chosen to use a sequence of instructions as my basic program
format, with the intention that each instruction is executed in turn, except
some "branch" instructions which can cause the program to continue to be
executed from some other place. This is the most widely used and best
understood program format, allowing me to concentrate on other parts of
the project.

2.3.2 Instruction families

As I mentioned before, the SVM should be able to support multiple memory
paradigms. To make this clear, I've designed the speci�cation so that each
instruction belongs to a family. Instructions within the same family should
use the same memory.

2.3.3 Instruction design

While it is inevitable that some instructions will be necessary in every inter-
preter, the number of these should be kept to an absolute minimum. In par-
ticular, none of instructions that use a particular memory paradigm should
be obligatory.

Importantly, the obligatory instructions should not be Turing-complete.
The computational power of the SVM should be attainable by providing any
of a wide variety of di�erent sets of instructions.

2.3.4 Input and output

In order for a computer system to do anything practical, it must have a way
to show the result of its calculations to the user. It is also helpful to be able
to accept information as input from the user.

Since complex I/O isn't the purpose of the project, I only wanted to
include a simple model for it. Programs should be able to input and output
a byte at a time, which will normally be interpreted as an ASCII character.

2.4 Requirements for the tools

This project is mostly concerned with the interface between the bytecode
and the interpreter. However, since it would be tedious to write bytecode
manually, I decided to write an assembler tool to produce it in a �exible way
from a more abstract source code.

6



I planned to provide a way to run programs written in Java within the
SVM. Since the JVM bytecode is not �exible enough to be compatible with
SVM bytecode, I also designed a tool to translate between them.

I decided to write these tools in Ruby (see 2.6.2.1).

2.4.1 Assembler

An assembly language is a human-readable way to represent a sequence of
instructions. An assembler then converts this to bytecode. The assembler
needed to support some features which are standard for assembly languages:

• Assigning integer values to a name (an alias) so that they can be used
as memory location operands more readably

• De�ning labels, and being able to use these as operands of branch
instructions

• File inclusion directives, to allow code reuse

• Specifying literal operands in either decimal or hexadecimal

It was also useful for it to have some non-standard features which I decided
would be useful for me:

• A way to de�ne new instructions easily

• Identifying instructions by both their family and their individual iden-
ti�er

An important part of making bytecode for the SVM will be organising the
library of emulation routines. I decided to separate this job from the main
assembler, but still write it in Ruby.

2.4.2 JVM bytecode translator

The requirements for the translator are straightforward. It needs to read
in JVM bytecode (which is stored in a .class �le) and output equivalent
Salamander assembly language code.

However, to attempt to emulate the entire functionality of the JVM would
take far longer than the time I had available, and would largely be irrelevant
detail. As such, I have chosen a useful subset of the Java language to support
and ensured that any JVM bytecode that is compiled from that subset can
be translated.

Features that I have decided to support include:

7



• Integer and Boolean arithmetic

• Arrays

• All basic control structures (e.g. if, while, for)

• Input and output, one byte at a time

JVM .class �les consist of a library of methods, and a pool of constants that
they can use. I have had to learn the layout of the .class �le, as well as the
computational model which the JVM uses.

2.5 Instruction families

The instruction families I have de�ned are intended to serve as examples. I
have chosen them because of their di�erent memory paradigms, and speci�-
cally because they �tted a particular interpreter or the JVM translator. The
core idea of the project is that new families should be easy to add to the sys-
tem, so this relatively small sample of the area of memory paradigms should
be seen as the �rst step to a growing collection.

• DMM32 � an architecture with a memory of 32-bit unsigned integers,
where instructions act directly on memory locations

• STK32 � a stack machine using 32-bit signed integers, designed to be
similar to JVM bytecode

• REG16 � a 16-bit unsigned machine with three special-purpose registers

See Appendix A for more details about the families used.

2.6 Approach to writing software

The nature of this project meant that I have had to write many medium-sized
programs in various languages, rather than any single large piece of software.
This, of course, makes the architecture of each program a less important
consideration than the design philosophy used throughout.
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2.6.1 Design principles

The techniques that saved me the most time during this project were:

• A version control system with a backup plan, meaning I would always
keep the code clean rather than �commenting out� sections.

• Code reuse, for example between the assembler and the library gener-
ator

• Using high-level constructions to make modi�cations easier, for exam-
ple:

� Having the assembler dynamically read the de�nitions of instruc-
tions from a spreadsheet

� Using constants for the numbers that identify instructions in the
interpreters, rather than literals

� Creating reusable blocks of assembly which are required by emula-
tion routines, and using a directive to include them where needed

2.6.2 Languages used

There were a variety languages in which I wrote write signi�cant pieces of
software during this project, some of which I didn't know before, and some
of my own invention.

2.6.2.1 Ruby

I already had experience in Ruby, making it the obvious choice for the tools.
It has the following advantages.

• As a scripting languages, it has very natural access to �les. This is
important as the source assembly, the destination bytecode and JVM
bytecode are all stored in �les.

• It has powerful string manipulation, including regular expressions which
make parsing simple assembly easy.

• It is a fully interpreted language, which means that the debug cycle is
faster.

• The programs are not performance-critical, so the ine�ciency of the
language is not important.
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• It supports richer high-level features than other scripting languages, for
example Perl, making the software more maintainable.

2.6.2.2 Java

Again, I already had experience in Java. I used it for the general-purpose
desktop interpreter, on which the rest of the system was tested.

2.6.2.3 C

I wrote the microcontroller implementation in C. I have no previous experi-
ence in C itself, but due to its close relation to other languages like Java, the
learning process wasn't too bad. I also investigated MIPS assembler for the
same purpose, but chose not to use it.

2.6.2.4 Verilog

Verilog hardware description language let me declare the design of a proces-
sor in a high-level way. I have a little experience in the language, but to
implement an SVM required a lot of extra learning. This learning was hin-
dered by di�erences between features supported by the Altera system and
those described in many on-line resources.

2.6.2.5 Salamander assembly

As a language of my own creation, I didn't need to learn SVM assembly,
as such. However, I needed to get used to the operations that could be
performed in each instruction family to describe the instructions in terms of
one another, and to write example programs.

The stack-based and special-purpose register families (STK32 and REG16)
were particularly di�cult to work with at �rst, as I had no experience in any-
thing at all similar.

10



Chapter 3

Implementation

This chapter describes the the Salamander Virtual Machine, and the pro-
grams that are used to generate and run SVM programs.

Firstly, we decide how a valid SVM implementation should act, and spec-
ify the program format that it should run. This allows us to to write programs
in the SVM format and, more importantly, write tools to generate programs
from assembly language and Java. Finally, we write example interpreters to
run these SVM programs.

This project provided opportunities for many interesting implementations
throughout. Some of the highlights are:

• The emulation routine programmer interface (see 3.1.3.3)

• The binding sequence (see 3.2.2)

• Implementing dmm32 memory on a reg16 machine (see 3.3.2)

• The Verilog implementation (see 3.4.3)

3.1 The speci�cation

The speci�cation of the SVM, because it is designed to be so �exible, is very
small, consisting only of:

• A description of the execution model

• A description of the program representation which an interpreter must
decode

• Details of a small number of obligatory instructions

11



3.1.1 Execution model

As I described earlier, a Salamander program consists of a sequence of in-
structions, each of which comes from one of the de�ned families. They should
be executed in order, except after some branch instructions, which can cause
execution to jump to a new place.

3.1.2 The bytecode format

I decided to use a sequence of bytes to represent programs, for the practical
reason that it is the ubiquitous data format of pretty much all devices at
the moment. When a sequence of bytes contains a program for a VM it is
traditionally called bytecode.

To express instructions within the bytecode, I had the requirement that
the instructions could be of variable length, since di�erent instructions could
need very di�erent numbers of operands (and could use di�erent word lengths
to represent them). In addition, it is necessary that interpreters can correctly
deal with instructions which they don't recognise, in particular recognising
their length so as to know where the following instruction starts. So, each
instruction is represented by:

• The numbers that represent which instruction it is. This consists of a
byte to identify the family, followed by a byte to identify the instruction
within the family. Of course this limits us to 256 of each, but provides
good performance.

• A byte to indicate the number of bytes of operand that follow

• The bytes of the operands

The structure of the operand bytes is deliberately not speci�ed here, so that
each instruction can interpret them however is most appropriate.

3.1.3 The meta-instructions

The Church-Turing thesis states that any computer can completely emulate
any other. In particular, it would be possible to write complete SVM inter-
preters in a variety of minimal instruction sets. The purpose of this project
is not to do this, as it would normally mean a high performance cost. In-
stead, the SVM should be able to �exibly emulate missing instructions while
directly using the ones that the interpreter provides.

12



It is obvious that the ability to emulate instructions in terms of each
other will need some extra capability to be built into the SVM. There are
two possible approaches to achieve this:

• Providing a database of emulation routines and having the interpreter
choose between them

• De�ning special instructions (which I will call �meta-instructions�),
which are mandatory in every interpreter, and su�ce to allow emu-
lation

I have chosen to use the second option, since it seems more exciting, and is
less complex for the interpreter. A large reason for this is that the interpreter
will already have the capability to run instructions in sequence, so adding a
few extra instructions is simple. Also, it places the responsibility for deciding
how to emulate each instruction, a di�cult task, in the bytecode. Since
all SVM instructions must belong to a family, I have de�ned a universal
family of instructions to contain the meta-instructions, called uni, which all
interpreters must recognise.

I have identi�ed that, in order to allow this type of emulation, three
capabilities need to be provided by a meta-instruction:

• Specifying how to emulate an instruction (binding)

• Making decisions depending on instruction availability (jump if imple-
mented)

• Accessing information about an instruction as it is emulated (get operand)

These meta-instructions are introduced below.

3.1.3.1 The bind meta-instruction

There must be a way to bind an unimplemented instruction to a location
in the bytecode which should be run to emulate it. This will be used when
the program starts running, to make a binding for every unimplemented
instruction. When the instruction is encountered, the interpreter must jump
to that location.

13



3.1.3.2 The jump if implemented meta-instruction

It is necessary to be able to query whether the interpreter supports a given
instruction, then to act di�erently depending on the answer. An instruction
which can achieve this is jump if implemented, which takes an instruction
number and a location in the bytecode to jump to. There is a choice here
which instructions are considered to be implemented :

• Only those natively implemented by the interpreter

• Those natively implemented, as well as those that have been bound

Both are enough to serve the purpose. The �rst option could, as a bonus,
allow performance-critical programs to decide between implementations of
algorithms depending on which instructions are native (so faster). Despite
this, it is better to use the dynamically changing version, for implementation
reasons explained in section 3.2.2.2.

3.1.3.3 The get operand meta-instruction

A routine to emulate an instruction must do exactly the same as the instruc-
tion itself. That means it reads the operands, acts on them, and then returns
�ow to the following instruction. To do this, there must be instructions which
allow it to access:

• The operands of the instruction being emulated

• The program location of the instruction following the emulated one

I'll say operand to mean both the operands and program location during this
description. For the sake of simplicity, I'll call the meta-instruction which
reads this getOp for now.

It is assumed that each emulation routine must fetch its operands before
any other might be invoked. This assumption means that the interpreter
only ever needs to hold one set of operands at once, avoiding the need to
implement a stack in the interpreter, simplifying it greatly.

There are two very di�erent ways that getOp can act. The distinction
between them is straightforward, but the reason to choose one over the other
is subtle � I ended up changing from one to the other during implementation.
I'll talk about both ways.
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Retrieving the operand into the programmer's memory It seems
intuitively sensible to write the operands to the same memory that the pro-
gram is using for other data. Of course, the getOp instruction would need
to be aware of the memory paradigm, and as such a di�erent version needs
to be de�ned for each family. This doesn't appear to be a problem at �rst,
until you consider binding an entire emulated family in terms of a native one,
including a version of getOp. If getOp itself needs to be emulated, the
assumption above, that getOp only occurs before any emulated instruction,
is violated. That means that operands are overwritten, causing errors.

Copying the operand into the bytecode Another way for the emula-
tion routine to get the values is for getOp to copy them into the running
bytecode, into the operands of instructions later in the emulation routine.
This is, in e�ect, a type of self-modifying code, and as such it would be nor-
mal to expect it to be confusing, or cause poor performance. In fact, this
fairly restricted form of self-modifying code is easy to reason about, as you
could interpret it as directions as to how to replace an unrecognised instruc-
tion with its emulation routine. Moreover, it doesn't su�er from the problem
described above, and so is the solution I used.

In order to copy a value into an operand, there must be a way to give
the location of the operand within the program to getOp. This leads to the
additional requirement for the assembler to be able to use a label de�nition
as an operand (see 3.2.1.2).

3.2 Generating bytecode

Now that we have de�ned what Salamander bytecode should look like, we
will discuss how to actually produce it. Of course, it would be possible to
hand-code valid bytecode, and indeed I did so at early stages of testing.
However, the following tools to automate the process are indispensable.

• The assembler

• The library generator which organises the emulation routines

• The JVM bytecode translator which allows the programmer to use a
higher level language

Figure 3.1 shows how a program, either in Java or Salamander assembly
language, is combined with the emulation routines to produce bytecode.
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Salamander bytecode

Assembler

Program in Salamander assembly

JVM bytecode translator

Program in JVM bytecode

Existing Java compiler

Program in Java

Library generator

Emulation routines

Figure 3.1: The compilation/assembly process
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3.2.1 The assembler

The assembler performs a few important functions on which not only the
programmer, but also the other tools, rely. Some of these are trivial to
implement, but some deserve discussion.

• Understanding string representations of the instructions and construct-
ing operands of the right bit-width

• Managing the de�nition and use of names, as a result of the alias

directive

• De�ning and using labels so that branch instructions can point to an-
other place in the code in a maintainable way

• De�ning namespace regions, which limit the scope of both alias

names and labels

• Using the include directive to assemble the content of another �le
into this one

• Outputting a valid bytecode �le

Since this is solely a tool to help me during the development, I have de�ned
the assembly language to be what the assembler will process.

See Figure 3.2 for an example fragment of code, which will introduce
the features that I will describe. Its purpose is to emulate a bitwise and
instruction in terms of or and not.

The �rst two lines are alias de�nitions. The names x and y are bound
to a newly chosen integer, for which they will be substituted wherever they
are used. The memory locations addressed by these integers are used to store
intermediate values later in the program.

The lines beginning with a ' (quote) are interpreted to be comments and
ignored.

Notice how each actual instruction begins with its family (e.g. uni,
dmm32) then states its instruction (e.g. opcopy, not) before listing its
operands.

The �rst opcopy instruction instructs that 4 bytes of operands, starting
at byte 0, from the emulated and instruction should be copied to the location
xAddress. The semantics of and are that this operand is the memory
address of the �rst argument to the bitwise AND function.

The �rst not instruction contains a label de�nition for xAddress, des-
ignated by the : (colon) after the name. This means that the space in the
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alias x

alias y

'Get the operands

uni opcopy 0 4 xOperand

uni opcopy 4 4 yOperand

'Get where to store the result and where to return to

uni opcopy 8 4 resultOperand

uni epccopy 2 returnAddress

'Not both of them

dmm32 not xOperand: x

dmm32 not yOperand: y

'Do an OR

dmm32 or x y x

'Not the result

dmm32 not x resultOperand:

'Return to the previous location in the program

uni jimpl UNI:JIMPL returnAddress:

Figure 3.2: An implementation of and in terms of or and not
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Family Number Name Semantics No.

operands

Width

1

Width

2

Width

3

Width

4

DMM32 2 MUL Dereferences and multiplies

the �rst two operands,

storing the result in the

third. Over�ows silently.

3 4 4 4

DMM32 3 DIV Dereferences and divides the

�rst two operands, storing

the quotient in the third and

the remainder in the forth

4 4 4 4 4

DMM32 4 JMPEQ Compares the �rst two

operands and jumps to the

third if they are equal (the

address is absolute)

3 4 4 x

Table 3.1: A fragment of the instruction spreadsheet

bytecode for this operand is initially left blank, and when the opcopy above
is run, it is �lled by the appropriate value.

Similarly, the jimpl instruction, which is used to return once the emula-
tion has been completed, has the old program counter copied into it by the
epccopy instruction.

3.2.1.1 Understanding the instructions

The de�nition of the instructions is stored in an XML spreadsheet to simplify
adding new ones. The assembler parses this XML, to build a database of the
details of instructions. This includes the number and bit-width of operands.

Table 3.1 shows a fragment of the input spreadsheet used in this process.
The widths are speci�ed in bytes, since operands must occupy entire bytes
of the bytecode anyway. A width of x indicates that the operand has no
�xed length, and is usually used for an address within the bytecode. The
assembler may then choose whatever length is needed to store it. These can
only be used for the last operand of an instruction, or the boundaries between
operands would be ambiguous.

The full spreadsheet is available in Appendix A.4.

3.2.1.2 Resolving labels

Labels can be de�ned either before instructions or as an operand, in order
to allow emulation routines to copy operands. In order to do this, we have
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to make two passes over the code. Firstly, we need to construct the layout
of the bytecode, leaving placeholders wherever a label is used, and making
a note of the address of each label. Subsequently, we go back and �ll in the
value of each of the places a label is used.

3.2.2 The library generator

The designer of instructions has to provide implementations of their instruc-
tions in terms of others, which I call emulation routines. I have decided
to have the bytecode choose how to bind each instruction (using the meta-
instructions, see 3.1.3). This means a section of the bytecode must be gen-
erated to perform this, and to actually hold the emulation routines: I will
refer to it as the library.

The emulation routines are kept in assembly form, and the library gen-
erator outputs the assembly for the library. This is so the task of resolving
labels only needs to be done once, by the assembler.

Inlining the emulation routines themselves into the library is a trivial task;
the di�culty is that most instructions have more than one emulation routine,
so we need to choose which to use. This will depend on the instructions that
are provided natively by each particular interpreter. We need an algorithm
to make this decision, and to �nish with an optimal set of bindings, so that
each binding uses the minimum number of layers of emulation.

3.2.2.1 The design of the binding sequence

There is a spectrum of possible approaches to this task, running from the
fully static (where the computation is done as the library is generated) to
the fully dynamic (where it is done as the bytecode is being interpreted).

The static method would be to consider every possible combination of
provided instructions statically and choose what to do in each situation.
The dynamic method would read which emulation routines require which
instructions at run time, and choose which to use to bind all the instructions.

Both of these methods are in fact unusable. The static version would
take an intractable amount of time to do the static calculation, producing an
unusably large library. The dynamic version seems a good idea, except that
we don't know which instructions are available on which to run the algorithm
until the algorithm is �nished.

So the algorithm needs to run half-statically, half-dynamically. Loops
over the instructions and emulation routines need to be unrolled statically,
but branches depending on whether the interpreter implements a certain
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instruction are left to be done dynamically. This means only the instructions
that we know are always provided are used during the binding sequence.

3.2.2.2 The binding sequence implementation

Figure 3.3 shows the pseudo-code for the algorithm I used. It is an itera-
tive approach, gradually building up the set of implemented instructions by
only binding new emulation routines when all the instructions they use are
implemented.

The lines in normal text correspond to lines of Ruby in the library gen-
erator, while the lines in italics correspond to lines of assembly that are
emitted.

This approach relies on the jump if implemented instruction considering
instructions which have been bound, as well as those provided by the in-
terpreter, to be implemented. As discussed in 3.1.3.2, an alternative, and
equally valid, semantic would be to only jump on natively implemented in-
structions. If we only had that type of jump if implemented, the binding
sequence would need to statically navigate the tree of possible combinations
of native instructions.

In fact I originally implemented that method, which lead to the binding
sequence having a large bytecode size. To minimise this, I had implemented
an algorithm based on a Markov chain, which determined the instructions
most used in emulation routines and dealt with them �rst, so they didn't need
to be checked again when considering other instructions. Unfortunately, even
with this improvement, the bytecode eventually became larger than would
�t on the hardware implementation, so I had to switch to the less interesting
method.

3.2.3 The JVM bytecode translator

The largest part of the JVM translator is the code to parse Java .class �les.
Fortunately, Ruby's expressive power meant that I needed only one line of
code to parse each element of the .class �le to build up a data structure
containing the bytecode. Due to the the .class format's complexity, this was
still a signi�cant task.

Once I had the bytecode for the main method, it was a line-by-line trans-
lation to SVM bytecode. The bulk of the JVM instructions correspond to
exactly one SVM instruction from the STK32 family (since that family was
designed for the purpose, see Appendix A.2). Error checking was necessary
to prevent use of the features of Java which aren't supported by the SVM.
The output is an SVM assembly �le.
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DoAnotherLoop:

for each instruction

if notImplemented(instruction)

// Go through the emulation routines for this

// instruction.

for each routine in instruction

// Check whether all the instructions that the

// routine uses are implemented

for each dependency in routine

if notImplemented(dependency) then goto RoutineFails

next

// All dependencies are implemented - bind

bind(instruction, routine)

break

RoutineFails:

next

endif

next

//See whether everything is now bound, and loop again if not

for each instruction

if notImplemented(instruction) then goto DoAnotherLoop

next

Figure 3.3: Pseudo-code for algorithm to bind instructions
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3.3 Emulation routines

Now we have discussed what Salamander bytecode looks like, and how a
program is converted to bytecode, the reader may be interested to see the
bytecode for a program, which can be found in Appendix D. A large part of
the bytecode is occupied by the emulation routines, and much of the rest is
the binding sequence, which is also generated from the emulation routines.

I have written three example families of instructions, and the emulation
routines to translate between them (see Appendix A). Also I have written
routines to implement individual instructions in terms of others in the same
family.

3.3.1 Instructions within the same memory paradigm

Figure 3.4 shows a graph depicting some of the emulation routines which I
have written between instructions of the dmm32 family.

While most of these emulation routines are fairly obvious implementations
of well-known equivalences, a couple were more interesting.

3.3.1.1 dmm32 add

In the event that an interpreter provides logical and shifting instructions, but
no arithmetic, the rather elegant algorithm for addition in Figure 3.5 is used.
Of course this isn't a very likely situation in computers at the moment.

3.3.1.2 dmm32 div

The most complex of the instructions to emulate was the division. It uses
a binary long-division algorithm, the full code of which can be found in
Appendix B.1.

3.3.2 Implementing one memory paradigm in another

There is much more scope for complex implementation where the emulation
routines are providing a memory which isn't provided by the interpreter.

3.3.2.1 stk32 add implemented using dmm32

This is a simple example of how the stack machine family stk32 is imple-
mented over the three-address family dmm32. Figure 3.6 gives the complete
code of the emulation routine which will serve as a useful introduction to the
ideas used for all the emulation routines.
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DMM32 XOR

DMM32 AND

DMM32 OR

DMM32 NOT

DMM32 SUB

DMM32 ADD

DMM32 MUL

DMM32 SHR

DMM32 SHL

DMM32 REV

DMM32 JMPEQ

DMM32 JMPGR

DMM32 DIV

Figure 3.4: Emulation routines available between instructions of dmm32
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repeat

newX = x xor y

y = (x and y) < < 1

x = newX

until y becomes 0

Figure 3.5: Pseudo code for addition from bitwise logic

Emulate Stk32 ADD

StartNameSpace

alias x

alias y

uni epccopy 2 returnAddress

dmm32 load sp x

dmm32 sub sp one sp

dmm32 load sp y

dmm32 add x y x

dmm32 store x sp

uni jimpl UNI:JIMPL returnAddress:

EndNamespace

EndEmulate

Figure 3.6: stk32 add implemented using dmm32
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The �rst and last line de�ne the scope of the emulation routine, and are
read by the library generator. The body of the routine is not modi�ed by
the library generator, and is passed as a unit to the assembler.

The Namespace lines de�ne the scope of the aliases x and y. The other
alias used here, sp (stack pointer), is de�ned at a wider scope. It is used to
store the address of the current top of the stk32 stack within the dmm32
address space. Being an alias at a wider scope, its value persists between all
the emulation routines.

The actual calculation performed, even in this simple case, is dominated
by maintaining the emulated memory structure (in this case, decrementing
the stack pointer and reading and writing the values in the stack). This
becomes even more apparent where the memory is harder to emulate, as we
will see next.

3.3.2.2 dmm32 implemented using reg16

All of the emulation routines that provide dmm32 instructions using the very
limited reg16 instruction family (see Appendix A.3) are too large to include
here, but I will discuss some of the di�culties encountered.

The reg16 family only has three special-purpose registers, which means
that most operations require a lot of moving values between registers and
to and from memory. This limitation makes even simple tasks di�cult to
implement.

The smaller word size means that the memory space addressable in reg16
is much smaller than the dmm32 memory space (128kB instead of 16GB).
This limitation means that I had to use 4 levels of paging, with each page
table taking only 256 words of memory. Each level of page is addressable
using one byte, totalling the 32 bits that form a dmm32 address.

Also, the values that can be stored in the dmm32 memory are 32 bits
wide rather than just 16, so all the operations need to operate on the low and
high words separately. If there is a dependency between them (for example
a bit is carried from the low to high word of an addition) this needs to be
remembered.

I made heavy use of the include directive of the assembler to reuse the
code which reads and writes the emulated memory.

3.4 Example interpreters

SVM bytecode contains emulation routines. The bytecode will run on an
SVM interpreter with missing instructions, provided that the emulation rou-
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tines can �ll them in.
I have written three di�erent example interpreters, each with a di�erent

purpose.

• A Java implementation to run on desktop computers

• A C implementation to run on a MIPS microcontroller

• A Verilog (hardware) implementation

3.4.1 The desktop implementation

The primary requirement for the desktop implementation was that it could be
maintained easily, for example, in case I needed to change the speci�cation.
As the �rst interpreter, it needed to serve as the test ground for all the other
parts of the project.

3.4.1.1 Basic features

I decided to write it in Java, for the good balance of speed and maintain-
ability. The instruction family it provides is dmm32 (see Appendix A.1), as
well as the obligatory meta-instructions. The bytecode is loaded from a �le
into a byte array, from which it is run. The basic structure of the program is
predictable � a while loop, containing code to read an instruction followed
by large switch-case statements which do the appropriate action depending
on the instruction.

The memory (being too large to use a single array) is implemented using
a three-level paging system. Each page is only created when it is �rst written
to.

3.4.1.2 Debug features

Since this interpreter is the used to test the rest of the project, it was impor-
tant that it could allow debugging. To do this, it has a tracing mode, where it
outputs the details of everything it does. Of course, when the program being
run becomes complex (especially when multiple nested emulation routines
are involved) this becomes very verbose. This is a fundamental limitation
of this project, even providing a fully-featured step-through debugger would
su�er from the layers of emulation, making a single instruction require many
steps of the debugger.

The best solution I found was to modify the interpreter to programmati-
cally detect the conditions that were suspected to result from a bug.
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3.4.1.3 Testing features

I wrote the implementation of every dmm32 and universal instruction for this
interpreter, but it was important to be able to change which instructions were
provided so that various emulation routines could be tested. To do this, I
included a system so the program could modify which instructions it claimed
to provide.

This system later became useful for testing the performance of the em-
ulation routines, by allowing a way to systematically try combinations of
instructions.

3.4.1.4 reg16 version

I also adapted a copy of the Java interpreter to use the reg16 instruction
set instead. This was used to test the reg16 emulation routines, before
they were used in the hardware implementation. This proved a very useful
endeavour, as debugging on the desktop is much faster than on the hardware
implementation.

3.4.2 The microcontroller implementation

There is a soft-core MIPS implementation for the Altera DE2 board, devel-
oped in the Cambridge Computer Lab, called �Tiger�. I have implemented
an SVM interpreter in C for use on this processor.

Due to the similarity of C and Java, it was a relatively simple procedure
to translate the bulk of the interpreter for use on the board. However, there
were di�culties with the tasks that were previously easy.

Loading the bytecode onto the board was a challenge. The eventual
solution of compiling it as a constant into the interpreter, and uploading both
to the board together, was less elegant than I would have liked. However,
I did automate the procedure and use a C include directive to get the
bytecode from a separate �le, meaning that the details were hidden from the
user of the system.

I implemented the input and output through a terminal connection to a
normal computer. This required translating the routines for this from the
MIPS assembler, provided with the board, to C.

3.4.3 The hardware implementation

The �nal SVM implementation I have written is for a Field Programmable
Gate Array (FPGA) system on an Altera DE2 board. Verilog is a hardware
description language, which means that it is high-level, but can be translated
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directly into hardware, or to the layout of an FPGA. The available opera-
tions include basic manipulation of numbers of various bit-widths, as well as
assigning to registers at clock edges.

This implementation provides the reg16 instruction family, as well as
the universal family.

3.4.3.1 Core implementation

Performance was not a priority for this implementation � it is simply a proof-
of-concept. Each instruction takes multiple clock cycles to complete, as each
of the following phases is completed in one cycle:

1. Reading the family number

2. Incrementing the program counter so it points to the instruction iden-
ti�er

3. Reading the instruction number

4. Incrementing the program counter so it points to the number of operands

5. Reading the number of operands

6. Incrementing the program counter for each operand

7. Reading an operand

8. Performing the operation

The 6th and 7th phases are repeated as many times as there are operands.
The 8th phase may take multiple clock cycles, depending on the instruc-
tion being performed (for example the meta-instructions which write to the
bytecode need a clock cycle for every byte they write).

Using a hardware description language forced me to use a programming
style which wasn't ideal. Lines of Verilog have to be separated into those
that update registers, and those that hold values on a wire (for example a
data line of a memory). This means that pieces of code that occur at the
same time for the same reason are separated.
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3.4.3.2 Memory

To provide the memory required for the user of the reg16 instruction set (a
16-bit addressable, 16-bit wide memory), I used an SRAM chip provided by
the DE2 board. Because there is only one register that is used to address
memory in the reg16 instruction family, that register could be connected
permanently to the address line of the SRAM. This made reading as simple
as latching the contents of the data line, and writing only needed the �write
enable� bit to be set for a clock cycle.

The memory in which the bytecode is stored, and the memory in which
the bindings between instructions and their emulation routines are stored,
were a little more complex. For them, I used �megafunction� memories, which
are on the FPGA itself.

3.4.3.3 Input & Output

The DE2 board has, among other peripherals, a two line LCD display and
a PS2 port to which a keyboard can be attached. These were the most
appropriate devices to the model of I/O that the SVM uses.

I adapted some examples for the use of both the LCD display and PS2
keyboard that are provided on-line.1

I wrote a controller for the LCD which displayed the characters which the
program output on the lower line of the LCD. The line feed character causes
the contents of the lower line to move to the top line, for a scrolling e�ect.

In order to receive useful input from the keyboard, I needed to translate
from keyboard scan codes to ASCII, and synchronise the transfer characters
with the execution of input instructions by the interpreter.

3.4.3.4 Debug features

Thanks to the use of the reg16 version of the Java implementation, and
the unit tests (see 4.1.1), there were relatively few issues that needed to be
investigated on the device itself.

For those that remained, I used the DE2 board's 7-segment displays to
show the values of registers within the processor. I could change which value
I was inspecting using the switches on the board. Another of the switches
allowed me to pause the execution of the program, to step through it, ensuring
the registers had the correct values.

1Thanks to Dr John S Loomis of the University of Dayton, OH for the examples
http://www.johnloomis.org/digitallab/
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Chapter 4

Evaluation

The goals of this project were achieved and surpassed. This chapter describes
how I have veri�ed that the project worked, and how well it does so.

4.1 Testing for correctness of implementation

All components of this project have been tested thoroughly to ensure they
work correctly. I have tested them using both unit tests and as a system.

4.1.1 Unit tests

For each instruction family, I wrote an assembly program that exercised all
the instructions in as many ways as I could think of. For example, the
unsigned division instruction was tested with:

• Small numbers that divide exactly

• Large numbers that divide exactly (large meaning that the number
couldn't be represented in signed 32-bit arithmetic, and so any errors
with the unsigned interpretation would show).

• Small and Large numbers that produced a remainder

• With a smaller numerator than denominator

• With zero as the numerator

When I discovered a bug in an interpreter or emulation routine, I would add
it to a unit test so that it couldn't happen in any other.
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These were perhaps the most useful tool I had during the project. While
usually a unit test is only useful to ensure that one program works, I could
use these to test all the interpreters and emulation routines.

To test the routines which emulate instructions within the same family, I
used the desktop interpreter (see 3.4.1). It allows me to toggle whether each
instruction is provided. I could systematically choose sets of instructions to
make sure that every emulation routine was exercised by the unit test.

Testing the routines that provide an instruction family from another was
necessarily more ad-hoc, as I needed to use other interpreters as well as the
desktop one. Despite this, the nature of the project meant that any one
test provided a high level of con�dence. This is because running a unit test
for the stk32 family on reg16 interpreter showed that dmm32 was also
correct (see Appendix A.1). In fact, this technique of using multiple levels
of emulation in testing sometimes identi�ed de�ciencies in the unit tests.

4.1.2 System tests

It would have been inappropriate to unit test the tools written for this project
since each of them ful�lled a large number of simple requirements. The unit
test would have been as verbose as the tool itself. Instead, I tested the tools
by using them as part of the system.

The assembler was tested by processing the very large volume of code
that the library generator produced, as well as the example programs. The
fact that the assembly language was de�ned by what the assembler would
accept means also helped.

The library generator was used as the number of emulation routines grew,
producing a working library at each stage.

The java translator was used on multiple JVM bytecodes. I have a high
con�dence that the code to parse the .class �le format is correct, since it is
relatively simple. The translation of the bytecode is probably the least well
tested component of the system, as I had no way to systematically induce the
Java compiler to use all the possible JVM instructions that are supported.

4.2 Testing the performance of the system

Since the highest-performance SVM interpreter is itself written in Java, there
is no way to make a useful comparison between the performance of the SVM
and the existing JVM. I am con�dent, however, that there is no reason that it
would be any slower when the instructions being used are provided natively
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dmm32 imm 1234567854 alpha

dmm32 imm 234567 beta

Loop:

dmm32 add alpha beta gamma

dmm32 sub alpha beta gamma

dmm32 mul alpha beta gamma

dmm32 div alpha beta gamma delta

uni break 'This instruction does nothing, but is counted

uni jimpl UNI:JIMPL Loop:

Figure 4.1: The integer arithmetic benchmark (Salamander assembly code)

by the interpreter, if the same technology were used (for example just-in-time
compilation).

4.2.1 Emulation within the same family

That leaves the interesting question of how much slower the system becomes
when the instructions used by the program are not provided by the inter-
preter, and are instead emulated. For the purpose of testing this, I have
written a system to measure the performance of a program given a certain
set of provided instructions. It counts the number of times a special instruc-
tion is run in a given length of time.

Integer arithmetic has the most interesting emulation characteristics of
all of the tasks that the SVM can perform, since all four operators can be
emulated, or not emulated, independently. I have used a benchmark that
repeatedly uses all four arithmetic operators. The code of the benchmark is
given in Figure 4.1. The results are shown in table 4.1. The result represents
the number of times the operators can run in a second on my otherwise
unloaded machine. Averages were taken appropriately, and results are given
to 2 signi�cant �gures.

Of course it would be impractical to test all combinations, so I have
restricted myself to testing each type of instruction (bit-shifting, logic, com-
parison then arithmetic) then leaving them implemented for the rest of the
tests. There are some informative general patterns that these results give.

The instructions often come in pairs which perform dual roles, and typi-
cally one of them is needed for the interpreter to be Turing-complete. Such
pairs include:

• Shift left and shift right (shl and shr). Also reverse (rev) is related
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4 4 4 4 4 32
4 4 4 4 4 34
4 4 4 4 4 36
4 4 4 4 4 4 37
4 4 4 4 4 4 39
4 4 4 4 4 4 4 62
4 4 4 4 4 4 4 62
4 4 4 4 4 4 4 4 93

4 4 4 4 4 4 4 4 290
4 4 4 4 4 4 4 4 4 300

4 4 4 4 4 4 4 4 4 4 3000
4 4 4 4 4 4 4 4 4 4 3200

4 4 4 4 4 4 4 4 4 4 4 6200
4 4 4 4 4 4 4 4 4 4 4 4 12000
4 4 4 4 4 4 4 4 4 4 4 4 4 44000

Table 4.1: Benchmark results of combinations of provided instructions

to these.

• and and or

• xor and not

• Jump if equal and jump if greater than (jmpeq and jmpgr)

• add and subtract (sub)

The results show that in general, which one of each pair is provided makes
very little di�erence to performance. However, providing both of them tends
to improve performance by a much larger amount.

The exception to this is the jmpeq and jmpgr pair. Here we see that
jmpgr is much more important to performance. This is because emulating
jmpgr requires a routine that scans through the bits of the inputs, whereas
a jmpeq can be implemented using only two jmpgr instructions.

The overall performance di�erence between implementing the minimum
number of instructions and all of them is roughly one thousand. This sounds
a lot, until you compare this to an interpretation-based solution that also
builds division and multiplication from the minimum set of instructions. A
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Family Used Operations/s

reg16 35000
dmm32 44
stk32 27

Table 4.2: Benchmark results of inter-family emulation on a reg16 inter-
preter

Family Used Operations/s

dmm32 64000
stk32 3100

Table 4.3: Benchmark results of inter-family emulation on a dmm32 inter-
preter

more likely use would be to emulate division on an architecture that doesn't
provide it, and this testing shows a speed decrease of only four times, which is
respectable considering the complexity of division in software and the number
of division operations the benchmark used.

4.2.2 Emulation between families

In order to measure the amount of performance lost by running a program in a
family that is not natively provided, we need to perform the same calculations
on the native family and on the emulated family. This isn't as easy as
it sounds, due to the vast di�erences of computational model between the
families (notably that reg16 only has 16-bit integers and no division).

So I have used a benchmark that can be performed on all the fami-
lies: running a repeated subtraction version of Euclid's algorithm on four
digit numbers. Even this was fairly di�cult on reg16 since there is no in-
struction to compare the size of two numbers. The results, again averaged
appropriately, are shown in tables 4.2 and 4.3.

The �rst test was performed on the reg16 desktop implementation, and
the second on the dmm32 desktop implementation. The score is the number
of times the algorithm could run in a second.

The most marked performance loss is in emulating the 32-bit families in
terms of the 16-bit one. This is unsurprising, because of the enormously
costly paging system used to access the emulated 32-bit memory.

The most surprising result is that the performance loss caused by emulat-
ing stk32 on dmm32 is much less when dmm32 is already being emulated
than it is on a native dmm32 interpreter (a factor of 2 rather than 20). This
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may be because the meta-instructions that make up the ine�ciency in the
directly emulated case are relatively cheap in the two-level case, since they
are still provided natively by the interpreter.

4.3 Testing the capabilities of the system

Here I will discuss two uses of the SVM to do something that would be much
more di�cult without it.

• Running an interactive Java program on an SVM computer I imple-
mented in hardware

• Running a Java SVM interpreter within the SVM

4.3.1 Interactive Java program on hardware

This is a demonstration of the way that the SVM allows useful programs to
be run on new devices with little e�ort.

I have written a pocket calculator emulator in Java. It, of course, features
the four arithmetic operators, which can operate on integers typed into the
program. Some other keys perform a selection of useful functions for the
computer scientist:

• Highest prime factor (F)

• Euler's totient function (T)

• Highest common factor (H)

The Java code that calculates the highest common factor is given in Figure
4.2. This is translated to SVM bytecode by the JVM bytecode translator.

Using the hardware implementation to run this calculator gives a portable
calculator. This set-up is shown in Figure 4.3, where I have typed the number
912, then pressed the T key to �nd its totient, 288.

4.3.2 SVM interpreter running on the SVM

The JVM translator allows Java programs to be translated to SVM bytecode.
The desktop implementation of the SVM is written in Java. The obvious
challenge is to run the interpreter in itself.

Unfortunately, the main desktop implementation (see 3.4.1) is too com-
plex to translate to SVM bytecode, because of its debug and performance
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// Compute the highest common factor (Euclid)

while (a != b) {

//Sneaky way to do 1-based mod using 0-based mod

if (a > b){

a = ((a-1) % b) + 1;

} else {

b = ((b-1) % a) + 1;

}

}

Figure 4.2: The highest common factor routine from the pocket calculator

Figure 4.3: Photograph of the DE2 board running the pocket calculator
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Operating System

Java Virtual Machine

Salamander Virtual 

Machine with DMM32

Salamander Virtual 

Machine with REG16

STK32 Emulation layer

DMM32 Emulation layer

STK32 Emulation layer

STK32

Emulation

Routines

SVM Interpreter

Java source

Java Bytecode Translator

DMM32

Emulation

Routines

Program for SVM

Figure 4.4: Running an SVM interpreter in the SVM

testing features, as well as the 32-bit memory being implemented using object
orientation.

However, the reg16 version (see 3.4.1.4) is simpler, and can be translated
to SVM. It runs in the main desktop implementation, and can successfully
pass the unit test for each of the instruction families. Unfortunately, the
performance is decreased by a factor of roughly 100000, meaning that no
useful programs can be run in a sensible time.

The route that the computation takes is depicted in Figure 4.4.

4.3.3 Conway's Game of Life

As an additional example program, I wrote an implementation of John Con-
way's cellular automaton �Game of Life� [4]. It, of course, allows the full set
of interesting patterns, including the �Gosper glider gun� shown in Figure
4.5. It is written in Java and translated to SVM bytecode, so it runs on
all SVM implementations (although the LCD screen used by the hardware
implementation can't show enough of the output at once to be meaningful).
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Figure 4.5: One output iteration of the implementation of Conway's Game
of Life
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4.4 Limitations

As the above tests have shown, the system doesn't seem to be limited in what
emulations are possible, only in how quickly it will run them. This is justi�-
able, given that other systems that did the same by means of interpretation
would be even slower.

Of course, I could have written more instruction families, interpreters and
example programs, and perhaps would have learnt more from doing so. This
could have included �oating-point arithmetic, support for exceptions, or a
more powerful I/O system. However, there was only limited time, and it was
more important to concentrate on the core of the project.

One way to improve the performance of the system fairly dramatically
would be to include a form of just-in-time compilation (JIT) in an interpreter.
It would have allowed the emulation routines for unrecognised instructions
to be copied directly into the program in the place of the unrecognised in-
struction. This would eliminate the time spent:

• Branching to the emulation routine

• Performing the meta-instructions to copy the operands into the emu-
lation routine

• Branching back to the program code

This would bring the project a level of performance similar to a static trans-
lation system, while keeping the dynamic �exibility that is the core of the
SVM.

Even with these limitations, the SVM is a powerful system that could
easily be used for programming devices. When it is being used in a way that
other VMs can be used, it will perform equally well, while it can also be used
to allow previously impossible �exibility with reasonable performance.
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Chapter 5

Conclusion

This project concerned the creation of the Salamander Virtual Machine,
which allows any program to run on an SVM implementation that only pro-
vides a small portion of the features used.

The project was a complete success, with the goal of running Java pro-
grams on a microcontroller device being achieved, and surpassed by running
them on a hardware implementation of the SVM as well.

The project ful�ls its design objective to make it easy to implement an
SVM interpreter. This is shown by the size of the smallest interpreter, only
160 lines of Java. A guide to producing an interpreter is included in Appendix
C.

As far as I know, the SVM breaks new ground in emulation of program-
ming paradigms: with �exibility that matches interpretation, at e�ciency
that comes close to translation. I hope that it provides the foundation for
further study, taking forward some of the exciting new ideas that have been
such an enjoyable challenge to investigate.
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Appendix A

Instruction families

The three families I provided are implemented in terms of each other as
shown in Figure A.1.

The dotted arrow indicates an implementation that was included for com-
pleteness, but could not be tested thoroughly since no stk32 interpreter was
written.

A.1 Direct memory manipulation �DMM32�

This family has a 32-bit wide, unsigned, 32-bit addressable memory space
on which its instructions can operate. Its arithmetic operations largely use
three memory addresses as operands, two sources and a destination. This
means that there are no registers in the architecture.

It is designed to be a general-purpose family which is easy to implement
on a desktop machine, and which is easy to implement other families on top
of. The reason I chose to make it unsigned was as a challenge more than
anything else.

A.2 Stack machine �STK32�

This family has an unlimited stack of 32-bit wide signed integers on which to
operate. The stack can also hold references to arrays which can be created
on a heap. Operations tend to occur by taking values from the top of the
stack, doing something with them, then returning the result to the top of the
stack. The family is designed to be close to the paradigm used by a subset of
the JVM, so that JVM bytecode can be easily translated to SVM bytecode
using STK32.

43



STK32

DMM32

REG16

Figure A.1: Inter-family emulation graph

A.3 Special-purpose register machine �REG16�

This family is designed to be tiny and very easy to implement. It was made to
be used with the hardware implementation (see 3.4.3). It has three registers,
all of which have a special purpose:

• An accumulator, which gets the result of all operations, and acts as the
�rst operand of all operations

• An index register which acts as the memory address for all memory
accesses

• A second operand register

It also has a 16-bit wide, 16-bit addressable memory space. The reason
that it is 16-bit rather than 32-bit is partly because the Altera DE2 board on
which the example hardware implementation was produced has a large 16-bit
SRAM available. It is also partly to give me the opportunity to demonstrate
implementing one memory size in terms of another (see 3.3.2.2).

A.4 Instruction spreadsheet

Below is the complete listing of instructions that I de�ned for the SVM.
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Appendix B

Example code

B.1 Division algorithm in Salamander assem-

bly language

Emulate dmm32 DIV

'Calculates num/dem

StartNameSpace

alias num

alias den

alias quotient

alias i

alias den< <i

alias bitI

alias zero

alias one

'Get the operands

uni opcopy 0 4 numAddress

uni opcopy 4 4 denAddress

'Get where to store the result and where to return to

uni opcopy 8 4 quotientAddress

uni opcopy 12 4 remainderAddress

uni epccopy 2 returnAddress

dmm32 imm 0 zero

dmm32 imm 1 one

dmm32 imm 0 quotient
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'Dereference the operands

dmm32 imm numAddress: num

dmm32 load num num

dmm32 imm denAddress: den

dmm32 load den den

'Start i off at 31

dmm32 imm 32 i

Loop:

'Decrement i

dmm32 sub i one i

'See whether bit i should be set

dmm32 shl den i den< <i

dmm32 jmpgr den< <i num Continue

'If den< <i has become 0, then all the set bits

'have been shifted off and this should be skipped

dmm32 jmpeq den< <i zero Continue

'Yes, it should, so set it and subtract the

'shifted denominator from numerator

dmm32 shl one i bitI

dmm32 or quotient bitI quotient

dmm32 sub num den< <i num

Continue:

'Loop back round if i is over 0

dmm32 jmpgr i zero Loop

dmm32 copy quotient quotientAddress:

dmm32 copy num remainderAddress:

uni jimpl UNI:JIMPL returnAddress:

EndNamespace

EndEmulate
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Appendix C

Guide: How to produce a basic

Salamander interpreter

So, you have a device, and would like to run the vast array of existing pro-
grams written for the Salamander Virtual Machine (SVM)? That's not a
problem � writing an SVM interpreter is easy! Just follow these instructions
to get a basic one on your platform. Then, if you �nd that you need more
performance, you can spend more time optimising your implementation.

C.1 Choosing a family

Every Salamander interpreter must provide instructions from two families.
One of these is uni, which everyone must provide. You can choose the other
one. A good choice would be:

• Similar in operation to the device. So if you have 32-bit signed arith-
metic, choose a family that does too.

• As close as possible to the family of programs you expect to run. Of
course, any Salamander programs will run on your interpreter, but if
the family is similar, they will be faster.

You also need to choose which of the instructions of the family you'd like
to implement. Some families allow very few instructions to be implemented,
while some need all of them. The more instructions, the better the perfor-
mance, but the more e�ort you have to put in.
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C.2 Choosing a way to read the bytecode

Salamander bytecode is stored in .svm �les. You may �nd you need to convert
to another �le format to make it easiest to transfer bytecode to your device.
It's completely up to you! Remember that the �rst 4 bytes of an .svm �le
are its size (little-endian, so the lowest byte comes �rst).

Make sure that you can easily and e�ciently read and write the bytes of
the bytecode as you write the interpreter for your device.

C.3 Set up the variables you need

Now, the �rst thing you need in the interpreter is a set of registers to that
you'll need to read and write while the bytecode is being run.

• A program counter � which needs to be able to take values up to the
size of the bytecode.

• A emulation program counter � of the same type as the program counter.
It's used to store the old program counter when an emulation routine
starts.

• A emulation operands array � which needs to be an array of bytes. It's
used to store the operands of an instruction being emulated.

• An accumulator � which is just one byte, and is used for I/O.

• A bindings map � which maps from two bytes (the family number
and instruction number of an instruction) to a program counter value
(to jump to when that instruction needs emulating). To save space,
you could implement this as an array of arrays, and only allocate the
second-level array for a particular family when it is �rst used.

• The memory used by the family that you have chosen to implement.
This may need registers, an addressable memory space, a stack, or
anything else.

C.4 Begin the main loop

Loop forever! Each iteration will be one instruction executed.
Now, the �rst thing to do inside the loop is read the details of the instruc-

tion from the bytecode. Use the program counter to address the bytecode,
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and increment it after each byte is read. The bytes that make up an instruc-
tion are:

1. The family number

2. The instruction number

3. The number of operands

4. The operands (remember, there could be any number of these, so loop
through getting them)

How you store the operands is your choice. You may prefer not to copy them,
and just keep a note of their location in the bytecode.

C.5 See whether the instruction is implemented

The next task is to check whether the instruction is one of the ones you are
implementing. If it isn't, you need to use the emulation routine to emulate
the instruction. First, copy the program counter into the emulation program
counter, and the operands into the emulation operands. Then, read the
emulation routine's address from the bindings map, and copy it into the
program counter. Then start the main loop again to begin executing the
emulation routine.

If the binding map doesn't contain an entry for the instruction, either the
bytecode has a bug, or your interpreter has run it wrongly. Either way, you
probably want to produce some kind of error message.

C.6 The big case switch

Here is where you will give the implementations for all the instructions. De-
pending on which instruction you are executing, you'll need to act di�erently.

C.6.1 uni out and uni in

These two instructions are the only way to perform I/O on a Salamander
machine, making it very easy for you. Depending on your device, you'll need
to choose the most appropriate way to interact with the user. To implement
out, you need to output the contents of the accumulator byte; and for in,
you need to take a byte from the user and store it in the accumulator. Most
Salamander programs interpret the byte as an ASCII character, but you
could write a program that uses it entirely di�erently.
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C.6.2 uni bind

Here, you need to write to the binding map. The operands are:

1. The family number to be bound � one byte

2. The instruction number to be bound � one byte

3. The location in the bytecode that needs to be written to the binding
map � the rest of the bytes, little endian

C.6.3 uni jimpl and uni jnimpl

These instructions, jump if implemented and jump if not implemented, are
conditional jumps, depending on whether an instruction is implemented. An
instruction is implemented if you provide it, or if it has been bound. The
operands, in both cases, are:

1. The family number � one byte

2. The instruction number � one byte

3. The location in the bytecode to jump to, if the instruction described is
implemented (in the case of jimpl), or not implemented (in the case
of jnimpl) � the rest of the bytes, little endian

C.6.4 uni opcopy

This instruction copies some of the bytes of the emulation operands into the
bytecode (yes, you heard me right, it lets the program modify itself). The
operands are:

1. The index within the emulation operand bytes to start copying � one
byte

2. The number of emulation operand bytes to copy � one byte

3. The location within the bytecode to copy them to � the rest of the
bytes, little endian

Go through and copy the bytes across, overwriting whatever was at that
place in the bytecode previously.
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C.6.5 uni epccopy

Similarly, this copies the emulation program counter into the bytecode. The
operands are:

1. The number of bytes to copy � one byte

2. The location within the bytecode to copy them to � the rest of the
bytes, little endian

C.6.6 The instructions of the family you chose

Read the speci�cation of the family you have chosen for guidance how to
implement it. It shouldn't be too hard.

C.7 That's it!

All you need to do now is go back to the beginning of the main loop and run
the next instruction.

C.8 Testing your interpreter

You should test your interpreter using the unit test provided for its instruc-
tion family �rst. Then move on to the unit tests for the other families to
ensure that your interpreter performs emulation routines correctly.

Once this is done, you should be able to run any program written for
Salamander!
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Appendix D

Visualisation of Salamander

bytecode

Figure D.1 shows an image representing the bytecode for the SVM imple-
mentation of Conway's Game of life (see 4.3.3). Each pixel represents one
byte, with 00 represented by black and FF represented by white.

Distinct sections of the bytecode's structure are easy to see:

1. The binding sequence is the section near the beginning with regular
diagonal lines. This appears this way because all the instructions used
in the binding sequence are of the same length. It starts dark and gets
lighter because the program locations that branch instructions specify
are getting larger.

2. The emulation routines reside in the large, unstructured area in the
middle. The predominant colour is dark because the instructions and
family numbers are all low. The section with grey diagonal lines is the
implementation of the reverse (rev) instruction in dmm32, which uses
a large, statically unrolled loop.

3. The program itself starts at the dark section near the end. Because it
is translated from JVM bytecode, it uses the stack-based instruction
family, which doesn't need to specify memory locations in the way that
the other families do. This means the only bytes that have high values
are the program locations for branches. This program happens to have
very few branch instructions in the �rst half, making it dark.

Figure D.2 shows a hex dump of SVM bytecode, containing a portion of the
binding sequence and emulation routines.
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Figure D.1: A Salamander bytecode interpreted as an image
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0x0000 00 04 04 02 0A 3E 02 00 04 04 00 00 3E 02 00 04 04 03 12 3E 02 00 04 04 02 14 3E 02 00 04 04 02

0x0020 1A 3E 02 00 04 04 01 07 3E 02 00 04 04 03 0E 3E 02 00 04 04 01 0A 3E 02 00 04 04 03 0F 3E 02 00

0x0040 04 04 02 02 3E 02 00 04 04 02 0C 3E 02 00 04 04 01 0C 3E 02 00 04 04 03 13 3E 02 00 04 04 02 1B

0x0060 3E 02 00 04 04 00 03 3E 02 00 04 04 01 12 3E 02 00 04 04 03 04 3E 02 00 04 04 02 15 3E 02 00 04

0x0080 04 00 02 3E 02 00 04 04 03 0D 3E 02 00 04 04 01 0D 3E 02 00 04 04 01 01 3E 02 00 04 04 03 03 3E

0x00A0 02 00 04 04 01 0F 3E 02 00 04 04 02 18 3E 02 00 04 04 03 07 3E 02 00 04 04 03 0C 3E 02 00 04 04

0x00C0 02 0F 3E 02 00 04 04 02 12 3E 02 00 04 04 02 10 3E 02 00 04 04 01 00 3E 02 00 04 04 01 0E 3E 02

0x00E0 00 04 04 03 08 3E 02 00 04 04 00 06 3E 02 00 04 04 02 1F 3E 02 00 04 04 00 01 3E 02 00 04 04 02

0x0100 09 3E 02 00 04 04 02 1D 3E 02 00 04 04 01 02 3E 02 00 04 04 03 14 3E 02 00 04 04 02 04 3E 02 00

0x0120 04 04 02 0D 3E 02 00 04 04 02 1E 3E 02 00 04 04 02 17 3E 02 00 04 04 01 0B 3E 02 00 04 04 02 00

0x0140 3E 02 00 04 04 02 19 3E 02 00 04 04 01 10 3E 02 00 04 04 03 10 3E 02 00 04 04 01 09 3E 02 00 04

0x0160 04 02 11 3E 02 00 04 04 01 06 3E 02 00 04 04 02 05 3E 02 00 04 04 00 04 3E 02 00 04 04 02 07 3E

0x0180 02 00 04 04 03 11 3E 02 00 04 04 02 1C 3E 02 00 04 04 02 08 3E 02 00 04 04 00 05 3E 02 00 04 04

0x01A0 01 08 3E 02 00 04 04 00 07 3E 02 00 04 04 02 01 3E 02 00 04 04 02 13 3E 02 00 04 04 02 20 3E 02

0x01C0 00 04 04 01 04 3E 02 00 04 04 01 05 3E 02 00 04 04 03 09 3E 02 00 04 04 03 00 3E 02 00 04 04 02

0x01E0 06 3E 02 00 04 04 01 11 3E 02 00 04 04 01 03 3E 02 00 04 04 03 0A 3E 02 00 04 04 03 0B 3E 02 00

0x0200 04 04 02 16 3E 02 00 04 04 02 0E 3E 02 00 04 04 03 05 3E 02 00 04 04 03 01 3E 02 00 04 04 02 0B

0x0220 3E 02 00 04 04 02 03 3E 02 00 04 04 03 02 3E 02 00 04 04 03 06 3E 02 00 03 04 00 03 62 19 00 03

0x0240 04 02 0A 45 02 00 03 04 00 00 4C 02 00 03 04 03 12 53 02 00 03 04 02 14 5A 02 00 03 04 02 1A 61

0x0260 02 00 03 04 01 07 AE 02 00 04 04 01 10 AE 02 00 04 04 01 0E AE 02 00 04 04 01 06 AE 02 00 04 04

0x0280 01 08 AE 02 00 04 04 01 0D AE 02 00 04 04 00 06 AE 02 00 04 04 00 03 AE 02 00 04 04 00 05 AE 02

0x02A0 00 02 04 01 07 37 09 00 03 04 00 03 AE 02 00 03 04 03 0E B5 02 00 03 04 01 0A 33 03 00 04 04 01

0x02C0 09 02 03 00 04 04 01 10 02 03 00 04 04 01 0E 02 03 00 04 04 01 0D 02 03 00 04 04 00 06 02 03 00

0x02E0 04 04 00 03 02 03 00 04 04 01 0B 02 03 00 04 04 00 05 02 03 00 02 04 01 0A B5 09 00 03 04 00 03

0x0300 33 03 00 04 04 01 09 33 03 00 04 04 01 0C 33 03 00 04 04 00 06 33 03 00 04 04 00 03 33 03 00 04

0x0320 04 00 05 33 03 00 02 04 01 0A 3B 0A 00 03 04 00 03 33 03 00 03 04 03 0F 3A 03 00 03 04 02 02 41

0x0340 03 00 03 04 02 0C 48 03 00 03 04 01 0C 8E 03 00 04 04 01 10 8E 03 00 04 04 01 0E 8E 03 00 04 04

0x0360 01 0D 8E 03 00 04 04 00 06 8E 03 00 04 04 00 03 8E 03 00 04 04 01 0B 8E 03 00 04 04 00 05 8E 03

0x0380 00 02 04 01 0C 8D 0A 00 03 04 00 03 8E 03 00 03 04 03 13 95 03 00 03 04 02 1B 9C 03 00 03 04 00

0x03A0 03 A3 03 00 03 04 01 12 AA 03 00 03 04 03 04 B1 03 00 03 04 02 15 B8 03 00 03 04 00 02 BF 03 00

0x03C0 03 04 03 0D C6 03 00 03 04 01 0D 05 04 00 04 04 01 10 05 04 00 04 04 01 0E 05 04 00 04 04 00 06

0x03E0 05 04 00 04 04 00 03 05 04 00 04 04 01 0F 05 04 00 04 04 00 05 05 04 00 02 04 01 0D E3 0A 00 03

0x0400 04 00 03 05 04 00 03 04 01 01 52 04 00 04 04 01 0C 52 04 00 04 04 01 10 52 04 00 04 04 01 0E 52

0x0420 04 00 04 04 01 00 52 04 00 04 04 01 0D 52 04 00 04 04 00 06 52 04 00 04 04 00 03 52 04 00 04 04

0x0440 00 05 52 04 00 02 04 01 01 2A 0B 00 03 04 00 03 52 04 00 03 04 03 03 59 04 00 03 04 01 0F 60 04

0x0460 00 03 04 02 18 67 04 00 03 04 03 07 6E 04 00 03 04 03 0C 75 04 00 03 04 02 0F 7C 04 00 03 04 02

0x0480 12 83 04 00 03 04 02 10 8A 04 00 03 04 01 00 E5 04 00 04 04 01 10 E5 04 00 04 04 01 0E E5 04 00

0x04A0 04 04 01 06 E5 04 00 04 04 01 0A E5 04 00 04 04 01 0D E5 04 00 04 04 00 06 E5 04 00 04 04 00 03

0x04C0 E5 04 00 04 04 01 0B E5 04 00 04 04 01 05 E5 04 00 04 04 00 05 E5 04 00 02 04 01 00 B7 0B 00 03

0x04E0 04 00 03 E5 04 00 03 04 01 0E EC 04 00 03 04 03 08 F3 04 00 03 04 00 06 FA 04 00 03 04 02 1F 01

0x0500 05 00 03 04 00 01 24 05 00 04 04 00 06 24 05 00 04 04 00 03 24 05 00 02 04 00 01 6B 0C 00 03 04

0x0520 00 03 24 05 00 03 04 02 09 2B 05 00 03 04 02 1D 32 05 00 03 04 01 02 94 05 00 04 04 01 07 94 05

0x0540 00 04 04 01 10 94 05 00 04 04 01 0E 94 05 00 04 04 01 06 94 05 00 04 04 01 00 94 05 00 04 04 01

0x0560 0A 94 05 00 04 04 01 0D 94 05 00 04 04 00 06 94 05 00 04 04 00 03 94 05 00 04 04 01 05 94 05 00

0x0580 04 04 00 05 94 05 00 02 04 01 02 78 0C 00 03 04 00 03 94 05 00 03 04 03 14 9B 05 00 03 04 02 04

0x05A0 A2 05 00 03 04 02 0D A9 05 00 03 04 02 1E B0 05 00 03 04 02 17 B7 05 00 03 04 01 0B 0B 06 00 04

0x05C0 04 01 09 0B 06 00 04 04 01 0C 0B 06 00 04 04 01 10 0B 06 00 04 04 01 0E 0B 06 00 04 04 01 0A 0B

0x05E0 06 00 04 04 01 0D 0B 06 00 04 04 00 06 0B 06 00 04 04 00 03 0B 06 00 04 04 00 05 0B 06 00 02 04

0x0600 01 0B 48 0D 00 03 04 00 03 0B 06 00 03 04 02 00 12 06 00 03 04 02 19 19 06 00 03 04 01 10 20 06

0x0620 00 03 04 03 10 27 06 00 03 04 01 09 BA 06 00 04 04 01 10 74 06 00 04 04 01 0E 74 06 00 04 04 01

0x0640 0A 74 06 00 04 04 01 0D 74 06 00 04 04 00 06 74 06 00 04 04 00 03 74 06 00 04 04 01 0B 74 06 00

0x0660 04 04 00 05 74 06 00 02 04 01 09 EF 0D 00 03 04 00 03 BA 06 00 04 04 01 0C BA 06 00 04 04 01 10

0x0680 BA 06 00 04 04 01 0E BA 06 00 04 04 01 0A BA 06 00 04 04 01 0D BA 06 00 04 04 00 06 BA 06 00 04

0x06A0 04 00 03 BA 06 00 04 04 00 05 BA 06 00 02 04 01 09 75 0E 00 03 04 00 03 BA 06 00 03 04 02 11 C1

0x06C0 06 00 03 04 01 06 0E 07 00 04 04 01 07 0E 07 00 04 04 01 10 0E 07 00 04 04 01 0E 0E 07 00 04 04

0x06E0 01 08 0E 07 00 04 04 01 0D 0E 07 00 04 04 00 06 0E 07 00 04 04 00 03 0E 07 00 04 04 00 05 0E 07

0x0700 00 02 04 01 06 FE 0E 00 03 04 00 03 0E 07 00 03 04 02 05 15 07 00 03 04 00 04 1C 07 00 03 04 02

0x0720 07 23 07 00 03 04 03 11 2A 07 00 03 04 02 1C 31 07 00 03 04 02 08 38 07 00 03 04 00 05 3F 07 00

0x0740 03 04 01 08 9A 07 00 04 04 01 07 9A 07 00 04 04 01 09 9A 07 00 04 04 01 10 9A 07 00 04 04 01 0E

0x0760 9A 07 00 04 04 01 0A 9A 07 00 04 04 01 06 9A 07 00 04 04 01 0D 9A 07 00 04 04 00 06 9A 07 00 04

0x0780 04 00 03 9A 07 00 04 04 00 05 9A 07 00 02 04 01 08 7C 0F 00 03 04 00 03 9A 07 00 03 04 00 07 BD

0x07A0 07 00 04 04 00 06 BD 07 00 04 04 00 03 BD 07 00 02 04 00 07 0D 17 00 03 04 00 03 BD 07 00 03 04

0x07C0 02 01 C4 07 00 03 04 02 13 CB 07 00 03 04 02 20 D2 07 00 03 04 01 04 11 08 00 04 04 01 10 11 08

0x07E0 00 04 04 01 0E 11 08 00 04 04 00 06 11 08 00 04 04 00 03 11 08 00 04 04 01 05 11 08 00 04 04 00

0x0800 05 11 08 00 02 04 01 04 1A 17 00 03 04 00 03 11 08 00 03 04 01 05 6C 08 00 04 04 01 07 6C 08 00

0x0820 04 04 01 09 6C 08 00 04 04 01 0C 6C 08 00 04 04 01 10 6C 08 00 04 04 01 0E 6C 08 00 04 04 01 0A

0x0840 6C 08 00 04 04 00 06 6C 08 00 04 04 00 03 6C 08 00 04 04 01 04 6C 08 00 04 04 00 05 6C 08 00 02

0x0860 04 01 05 89 17 00 03 04 00 03 6C 08 00 03 04 03 09 73 08 00 03 04 03 00 7A 08 00 03 04 02 06 81

0x0880 08 00 03 04 01 11 88 08 00 03 04 01 03 EA 08 00 04 04 01 09 EA 08 00 04 04 01 10 EA 08 00 04 04

0x08A0 01 01 EA 08 00 04 04 01 0E EA 08 00 04 04 01 06 EA 08 00 04 04 01 0D EA 08 00 04 04 00 06 EA 08

0x08C0 00 04 04 00 03 EA 08 00 04 04 01 05 EA 08 00 04 04 01 04 EA 08 00 04 04 00 05 EA 08 00 02 04 01

0x08E0 03 59 18 00 03 04 00 03 EA 08 00 03 04 03 0A F1 08 00 03 04 03 0B F8 08 00 03 04 02 16 FF 08 00

0x0900 03 04 02 0E 06 09 00 03 04 03 05 0D 09 00 03 04 03 01 14 09 00 03 04 02 0B 1B 09 00 03 04 02 03

0x0920 22 09 00 03 04 03 02 29 09 00 03 04 03 06 30 09 00 03 04 00 03 00 00 00 05 04 00 04 55 09 00 05

0x0940 04 04 04 6B 09 00 05 04 08 04 AA 09 00 06 03 02 B3 09 01 10 08 00 00 00 00 00 00 00 00 01 0E 08

0x0960 00 00 00 00 00 00 00 00 01 10 08 00 00 00 00 01 00 00 00 01 0E 08 01 00 00 00 01 00 00 00 01 08

0x0980 08 00 00 00 00 00 00 00 00 01 06 0C 00 00 00 00 01 00 00 00 00 00 00 00 01 08 08 00 00 00 00 00

0x09A0 00 00 00 01 0D 08 00 00 00 00 00 00 00 00 00 03 04 00 03 00 00 00 05 04 00 04 D3 09 00 05 04 04

0x09C0 04 E9 09 00 05 04 08 04 30 0A 00 06 03 02 39 0A 01 10 08 00 00 00 00 02 00 00 00 01 0E 08 02 00

0x09E0 00 00 02 00 00 00 01 10 08 00 00 00 00 03 00 00 00 01 0E 08 03 00 00 00 03 00 00 00 01 09 0C 02

Figure D.2: The �rst 0X1000 bytes of the SVM library in bytecode, hex
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Appendix E

Original Proposal

Alex Davies

St John's

AJD74

Computer Science Tripos Part II Project Proposal

A system to allow rapid deployment of programs to new architectures

17/10/07

Project Originator: Alex Davies & Christian Steinruecken
Resources Required: Ordinary computers and an ECAD labs board.

See Project Resource form.
Project Supervisor: Christian Steinruecken
Director of Studies: Robert Mullins
Overseers: Andrew Pitts and Peter Sewell

E.1 Introduction

I would like to create a system which enables new and existing programs to
be executed on a new architecture with minimal investment. This system
would be aimed to enable prototyping, but also to allow greater e�ciency to
be added incrementally as the architecture becomes more mature.

New architectures and platforms are being designed at an increasing rate,
as technology allows computing to be used for diverse applications. Many
companies produce specialised devices for their own purposes. These could
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often be used by another company for a completely di�erent purpose, but
because of the cost of experimentation with the platform, then translation of
existing code to the new architecture, opportunities to do so are missed.

Virtual machines are already in widespread use with the intention to make
programs portable. However, previous VMs have always been designed by
trading o� e�ciency against implementation cost. This project will create
a virtual machine with a �exible speci�cation, so that only a very small
amount need be provided for a minimal implementation, but fully featured
implementations can provide more in order to be more e�cient.

This will mean that a company whose existing programs are written for
this VM can experiment with a new platform at minimal cost. Then, if
they choose to use the new platform, they can improve the e�ciency of their
VM implementation to make it ready for production. They never need to
translate, or make cut-down versions of their programs.

I will use the terminology �Virtual Machine� or �VM� to mean the system
for which programs will be written. There will be various implementations
of the VM. I will call each of these an �interpreter�.

E.2 Key implementation concepts

The virtual machine will specify that interpreters must provide a Turing-
complete subset of the instruction set. When an instruction is encountered
which is not implemented, it will be looked up in a library of instructions in
terms of other instructions.

The virtual machine will provide instructions which include many pro-
vided by the Java Virtual Machine (JVM). Although, due to the restrictive
standard of the JVM, it will not be possible to run Java bytecodes directly
in my VM, I will write a tool to do a conversion so that programs written
in Java and compiled using the Java compiler can be run. Only a subset of
Java will be supported.

E.3 Criterion for success

The project can be considered a success when a program written in Java can
be run on a microcontroller device. This covers both the requirement that
the VM is cheap to implement on new devices and the requirement that it is
su�ciently powerful for practical use.
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E.4 Resources

I will use ordinary computers for the majority of the project. I have secured
use of an ECAD board from the computer lab to use as an example of a
microcontroller device.

E.5 Starting point

I have no experience of specifying or implementing virtual machines, but
extensive experience of using them (speci�cally Java and .net). I am con-
�dent with a number of programming languages, but because of the cross-
architecture nature of this project, I may decide to also use some that I don't
already know.

E.6 Structure of the project

The project will require me to:

• Design and specify a �exible virtual machine, to which various paradigms
and instructions can later be added.

• Design, implement and unit test an interpreter, �rstly on a normal
computer.

• Design and implement a library to translate any instructions that are
not provided by a particular interpreter

• Write and run example programs that use instructions provided by the
library (this will form the system test for the library and the interpreter)

• Research the JVM spec, ensure that my VM has equivalent instructions
and write a translator (instruction-for-instruction) from JVM bytecode
to my own bytecode

• Write some example programs in Java, compile them using the Java
compiler and run them on the primary interpreter (this will form testing
for all three things).

• Design, implement and test a second interpreter on a microcontroller
device
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E.7 Timetable and milestones

These milestones correspond to the work areas I have identi�ed above, with
the exception of the progress report and dissertation.

A speci�cation 02-Nov
An interpreter on a desktop computer 23-Nov

The �rst iteration of the library of instructions in terms
of each other

07-Dec

The interpreter and library are tested and con�dent
have no bugs. Some useful examples.

01-Feb

Progress report 29-Feb
The VM can run programs written in java 29-Feb

Useful example programs and con�dence that the
translation is tested thoroughly

14-Mar

A working interpreter on a microcontroller device,
running all existing programs

04-Apr

The dissertation 09-May
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