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Chapter 1

Introduction

Functional programming languages are based on a model of computation that does not map
naturally onto the mutable load-store architectures seen in conventional processors. In gen-
eral, functional programming relies on function application and recursion rather than com-
putation through the update of a global state.

In this dissertation, I aim to show a processor design that uses combinators as instructions.
This may be regarded as a more natural form of processing for functional languages as it
relates directly to the lambda calculus, the basis of many functional programming languages.

The concept of using combinators as a form of processing is not new. There have been sev-
eral implementations of combinator processors in the past and currently, there is a significant
research project in the area of graph reduction on FPGAs at the University of York. However,
the issue of scalability has received relatively little attention. In particular, the question of
how graph reduction, a fundamentally memory bound problem, can scale to utilise off-chip
memory has not been tackled. This is a particular focus of my project and I hope to demon-
strate how the utilisation of off-chip memory is crucial if this type of architecture is to do
significant computation.

I designed a statically typed language called ML* that contains a subset of ML’s functional
and imperative features. Programs in ML* can be run in a designated interpreter or con-
verted to combinator bytecode by a bespoke compiler. This bytecode then executes directly
on a custom designed CPU, realised on a Altera DE2 Board.

This dissertation will describe each of these components in detail and show how they have
been used to implement a scalable system, capable of running significant combinator pro-
grams.
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Chapter 2

Preparation

This chapter outlines the work undertaken prior to implementation. It provides an intro-
duction to lambda calculus and combinators. It also briefly describes previous work in this
area and the influence that it had on the design. A description of the core architectural tech-
niques used in the processor is provided, and software engineering techniques employed
throughout the project are detailed.

2.1 Lambda Calculus and Combinators

The lambda calculus is the basis for most functional programming languages, including ML.
It presents a formal way to notate and apply functions without the notion of state and can
be viewed as a minimal Turing-complete programming language.

Lambda calculus expressions E have the following syntactic form:

E ::= x Variable
| λx. E Abstraction
| (E E) Application

where any occurrences of variables x have to be bound by an enclosing lambda abstraction.

Here are some examples of valid lambda expressions:

λx. λy. x λp. (p (λx. x)) ((λa. λb. (b a)) (λz. z))

Intuitively, an abstraction is a 1-argument function which describes what happens to that ar-
gument. For example, the term (λx. x) denotes the identity function that takes an argument
and returns it unmodified. By contrast, the function λ f . ( f (λx. x) ) takes an argument f and
returns the result of applying it to (λx. x).

Note that we consider the terms (λx. x) and (λy. y) equivalent by α-conversion, i.e. renaming
bound variables has no effect on the meaning of the term.

3



2.1. LC & COMBINATORS CHAPTER 2. PREPARATION

When a function is applied to an argument, the term can be reduced by substituting the argu-
ment for each occurrence of the bound variable in the body of the abstraction, and removing
the leading lambda binding. For example:

((λa. λb. (b a)) (λz. z)) →β λb. (b (λz. z))

Note how the (λz. z) term has been substituted for a. This step is called a β-reduction, and is
denoted by the symbol→β. A full treatment of the lambda calculus will not be given here;
see [6] for a detailed discussion.

Combinatory logic, introduced by Haskell B. Curry, is a variable-free relative of the lambda
calculus. Instead of having abstractions, it comprises a set of predefined functions (the com-
binators) which can be combined by applications.

Combinator Lambda Encoding Combinator Reduction
S λp, q, r. (p r)(q r) S P Q R→ (P R)(Q R)
K λp, q. p K P Q→ P
I λp. p I P→ P
B λp, q, r. p (q r) B P Q R→ P (Q R)
C λp, q, r. (p r) q C P Q R→ P R Q
Y λp. (λx. p(x x))(λx. p (x x)) Y P→ P (Y P)

Table 2.1: Combinator reductions and representation as lambda expressions

Combinator reduction does not require substitution, but can instead be thought of as per-
forming a rearrangement of its arguments, according to the reduction pattern of that combi-
nator. It turns out that only two combinators, S and K, are necessary to encode any function
that can be represented in lambda calculus, but it is convenient to have a few more. Table 2.1
shows some of the key combinators, their lambda calculus equivalent, and their reduction
rules.

Lambda calculus expressions can be translated to combinators by a process called variable
elimination. David Turner’s Advanced Translation Rules [14] (shown in table 2.2) do this in an
optimised way, using the five basic combinators: S, K, I, B, and C. The method is recursive,
with translation starting at the innermost lambda abstraction and working outwards.

Rule Side Condition
λTx. x ≡ I

λTx. P ≡ K P (x /∈ FV(P))
λTx. P x ≡ P (x /∈ FV(P))
λTx. P Q ≡ B P (λTx. Q) (x /∈ FV(P) and x ∈ FV(Q))
λTx. P Q ≡ C (λTx. P) Q (x ∈ FV(P) and x /∈ FV(Q))
λTx. P Q ≡ S (λTx. P) (λTx. Q) (x ∈ FV(P) and x ∈ FV(Q))

Table 2.2: Turner’s Advanced Translation Rules
FV(P) denotes the set of free variables in P.
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CHAPTER 2. PREPARATION 2.2. COMBINATOR GRAPH REDUCTION

Lambda calculus and combinators are powerful enough to encode data structures including
integers and arithmetic using a Church numeral encoding. For efficiency reasons however,
the hardware design has integers and basic arithmetic built-in as combinator primitives.

2.2 Combinator Graph Reduction

Combinator expressions can be represented as a binary tree, where the leaves of the tree
are combinator primitives and nodes represent applications. Reduction can be viewed as a
manipulation of these trees, which is implemented efficiently through the redirection (and
potential sharing) of pointers. Figure 2.1 shows how combinators reduce in tree form.

2.3 Previous Work

A fundamental milestone in this area of research was work done on SKIM, the S, K, I re-
duction machine by Norman et al. [8, 13] at Cambridge in the 1970s and 1980s. It outlines
a translation procedure from LISP to combinators and goes on to describe a combinator re-
duction mechanism in hardware. The core reduction principles of my processor are based
on the stackless model for graph reduction presented by this work.

The University of York has also undertaken a significant research project in this area. In
his PhD thesis [11], Naylor outlines the implementation of The Reduceron, an FPGA graph
reduction machine. His initial work describes a technique for encoding Haskell with the
combinators S, K, I, B, B*, C and C'. The reduction technique employed at York uses on-chip
memory on an FPGA, a stack-based architecture and a copy garbage collector. The most
recent implementation of their reduction machine, The Reduceron 2, has moved to a more
complex implementation and uses supercombinators instead of combinators. Supercombi-
nators were not a focus of this project, so no discussion of them is presented here.

A comparative analysis of the stackless implementation used in this project and the reduc-
tion model of The Reduceron can be found in section 4.1.3.

2.4 Converting ML to combinators

ML is a functional programming language based on lambda calculus, and a significant pro-
portion of the language can be translated to combinators using Turner’s translation rules.

There are some features of ML which are more difficult to encode as combinators because
they transcend pure, stateless lambda calculus. These features include, but are not limited
to, references, IO and exceptions and will not receive significant attention in this work.

Specific details of the conversion between ML and combinators is provided in section 3.1.4,
so here I will present some of the more tricky aspects of the conversion which do not amount
to a simple desugaring of the language.

Recursion in ML is implicitly introduced through function declarations. In the lambda cal-
culus, recursion is implemented by the application of a fixed-point operator; one that is com-
monly seen in literature on the subject is the Y combinator, discovered by Haskell B. Curry:
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2.4. COMBINATOR CONVERSION CHAPTER 2. PREPARATION
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Figure 2.1: Combinator graph reduction
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CHAPTER 2. PREPARATION 2.5. PROCESSOR ARCHITECTURE

Y ≡ λ f . (λx. f (x x))(λx. f (x x))

The conversion process makes use of the Y combinator accordingly and is further explained
in section 3.1.4.

ML is a eager language, whereas combinators are traditionally implemented with lazy se-
mantics. Since the combinator byte-code that runs on the processor is lazy, I chose to pre-
serve these semantics in the high level language supported by the compiler. As such, this
language can only be said to be ML-like, having clear differences from ML with regard to
termination behavior. I will refer to this language as ML*.

Assuming a lazy model of execution raises the issue of arithmetic operations which are usu-
ally “eager” operations. For example, at the time of application, an addition operator expects
its arguments to be reduced to a value. This does not work in the lazy model, as illustrated
in figure 2.2.

+

4

* 2

3

TREE2

TREE1

Figure 2.2: Lazy semantics and arithmetic reduction

Reduction starts at the deepest, leftmost part of the tree. Clearly TREE1 in figure 2.2 will
not be reduced in its current position. The “plus” combinator must therefore first perform
a pointer manipulation on the graph to ensure its arguments are reduced before the actual
arithmetic can be performed. A thorough treatment of this is given in section 3.4.4 since it is
implementation specific.

2.5 Processor Architecture

As previously explained, combinator expressions can be represented as a graph, and reduc-
tion performed through manipulation of the graph’s pointers. This abstract concept has to
be transformed into an algorithm that can be implemented on an FPGA, and in a way that
takes advantage of the available hardware resources.

Firstly, the combinator graph needs to represented in memory. The binary nature of the
combinator graphs lends itself to using a bisected memory model. This also maps well onto
the resources available on the FPGA, since the on-chip RAM memory of the Altera FPGA
is divided into blocks which can be accessed simultaneously. The two memory partitions
are referred to as CAR and CDR; the CAR memory array represents the child on the left-hand
branch of an application and the CDR memory array represents the right-hand branch. Figure
2.3 (overleaf) shows a very simple combinator graph and how it is represented in memory.

7



2.5. PROCESSOR ARCHITECTURE CHAPTER 2. PREPARATION
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Figure 2.3: CAR and CDR: Representation of a simple combinator graph in memory

In order for a combinator reduction to be performed, the tree must be traversed to find the
left-most leaf node, where reduction will start. It is also necessary to record the path taken
so that it can be retraced at any time. Two pointers, P and B, are required to achieve this in
a stackless manner. The P pointer points to the “current” node in the tree that triggers the
next action of the processor, while the B pointer points to the last node that was traversed
in the tree. As nodes are traversed, the pointer in the left part of the cell gets redirected to
point to the parent node, from whence the flow of execution just came. Thus, there is always
a way of retracing and restoring the tree. Figure 2.4 illustrates what a simple program looks
like before any traversal has occurred and how it appears after the tree has been traversed
and the S combinator found.

S 1

2

3

S 1

2

3

CAR CDR
P

B nil

P

B nil

S 1

2

3

P

nil

B

S 1

2

3

CAR CDR

P

B

nil

Program before execution has started :
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REPRESENTATION

MEMORY 
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Figure 2.4: Mechanism for graph traversal and restoration
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CHAPTER 2. PREPARATION 2.6. GARBAGE COLLECTION

The presence of shared pointers means that combinator reduction must leave the graph in
a state such that only the node of the last argument is modified and the rest of the graph is
left as it was prior to the reduction. If a combinator was able to destructively walk over all
the memory cells that corresponded to its arguments, then a shared pointer to one of those
arguments could be affected by the reduction. Thus if reduction requires more than one cell,
it must be able to allocate a new one. To implement this, a free memory chain is used, which
links together all the free memory cells. A combinator can then claim a cell from the free
memory chain as it requires.

2.6 Garbage Collection

As combinators are able to consume free memory, it is clear that parts of the tree will even-
tually be abandoned and should be freed to allow the space to be reclaimed by future re-
ductions. This motivates the need for a garbage collector. The method chosen was copy
garbage collection. This can be implemented in a stackless manner which fits with the design
principles of the rest of the processor, and is relatively simple.

A copy garbage collector works by copying all the cells referenced by pointers (e.g. the B
and P pointers in the case of my processor) into a free memory partition or copy space. This
typically requires suspending reduction until the process is complete.

2.7 Software Engineering Techniques

The project represented a significant body of work, so careful planning and management
were essential for success. It also had a substantial hardware component and hence a de-
tailed development plan and test bench were crucial to prevent the complexity from spiral-
ing out of control.

The management strategy employed was:

• Ensure a thorough understanding of the hardware tools available and their limitations.
Structure the hardware design to exploit existing resources within the tools.

• Develop a strong software toolchain to reduce the complexity of debugging in the
hardware and allow unit testing of combinator programs.

• Employ an iterative development model to allow complexity within the hardware de-
sign to increase in a controlled manner.

• Parallelise development of the hardware design with a simulation model to allow for
fine-grained debugging.

• Keep a consistent record of work and build in sufficient redundancy to make the
project tolerant to failures on different levels.

9



2.7. SOFTWARE ENGINEERING CHAPTER 2. PREPARATION

2.7.1 The Hardware Tools

Hardware tools for FPGAs can be quite intricate. In this section, I will introduce some of the
tools which played a significant role in this design and implementation.

I did an internship with the Computer Architecture group in the summer of 2008, during
which time I experimented with Synplify [3], a vendor neutral synthesis tool and an alter-
native to Quartus [1], the Altera synthesis tool. I found that Synplify’s ability to do RAM
inference was far superior to Quartus’, whose ability to do this still seems to be a work in
progress. Later in the project, a significant issue was found with Synplify’s ability to synthe-
size off-chip communication modules and so the design was ported to Quartus.

JTAG modules provide an interface for direct communication with the board while it is run-
ning. This is a useful basis for building test harnesses, as it allows a portion of the on-chip
memory to serve as a buffer for messages in and out of the system. In particular, it can be
used to load programs into the processor in a reconfigurable manner.

The SDRAM controller is an interface to the off-chip SDRAM memory. It controls the main-
tenance of state within the SDRAM and exports a simplified set of signals that can be used to
read and write to the off-chip memory. A custom SDRAM controller can be generated using
the SOPC builder in Quartus.

2.7.2 The Software Toolchain and Unit Testing

Component Role
The Compiler This is responsible for taking a program written in

ML* and converting it to an abstract syntax tree
which it subsequently converts to combinators.

The Type System This indicates if the program is type safe according to
the implemented type system.

The Memory Initialiser This takes the combinator representation of the pro-
gram and converts it to a form that could be loaded
into the memory of the FPGA.

Table 2.3: Components of the Software Toolchain

Before implementation could commence, it was necessary to have a clear outline of the com-
ponents involved in converting programs written in ML* to a combinator program running
on the hardware. The components involved in this process constitute the software toolchain
and are outlined in table 2.3.

The modularisation of the software toolchain into separate components allowed a compre-
hensive series of unit tests to be built up around each module. Figure 2.5 shows the unit
testing that occurred at each level of the toolchain.

10



CHAPTER 2. PREPARATION 2.7. SOFTWARE ENGINEERING

ML* Program

Pretty Print AST 

Reduction

Software 

Combinator 

Reduction

Simulation

ML* Program

Abstract 

Syntax Tree

Combinator 

Tree

Memory 
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File

SANITY CHECK

CONVERSION CHECK

HARDWARE 

IMPLEMENTATION

CHECK

FUNCTIONAL CHECK

Software Toolchain

Unit Test Flow

KEY

Figure 2.5: Software Toolchain and Unit Test Flow

The Pretty Printer and AST (Abstract Syntax Tree) Reducer both serve to check that the com-
piler produces the correct abstract syntax tree for the provided ML* program. The Software
Combinator Reducer is used to reduce the translated combinator version of the program in
software, checking that the output agrees with that of the AST reducer.

Finally, the combinator stream is converted to a memory initialisation file which is fed to a
simulation model of the hardware, as described in section 2.7.4.
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2.7. SOFTWARE ENGINEERING CHAPTER 2. PREPARATION

2.7.3 The Iterative Development Model

Basic Prototype: S,K,I combinators supported. On-chip memory only. 

Program initialisation at synthesis time (not reprogrammable)

Add support for 

integer arithmetic

Add full set of 

combinators

Add 

reprogrammability

Add off-chip 

communication

Add garbage 

collection

Fine tune timing

Figure 2.6: The Iterative Development Model

The design strategy employed for the hardware implementation was an iterative one. A
basic prototype was implemented and tested and then increasing layers of the complexity
were added to this model at each stage. Each iteration was fully tested before the next
iteration was implemented hence providing a control on the complexity of the project and
allowing modular debugging. The stages of development are shown in figure 2.6.

The stages in the development model were not linear in time or complexity. Some stages,
such as the off-chip memory communication, required further subdivision and modularisa-
tion to allow for thorough testing.

2.7.4 Simulation

At each stage of development, a Verilog simulation model was implemented to facilitate
debugging. The simulation aimed to use much of the same code as the hardware version
to obtain a high level of reliability from the simulation results. Simulation was done using
ModelSim [2], which supports the full Verilog language plus test harness features such as
display statements. It also allows values to be “forced”, simulating the toggling of switches
and external stimuli.

As the processor evolved, more fine grained simulation was required, causing the complex-
ity of the simulation model to grow in line with the complexity of the processor itself.

12



CHAPTER 2. PREPARATION 2.7. SOFTWARE ENGINEERING

2.7.5 Redundancy

Redundancy of data is necessary to guard against failure on a physical level. For the project
implementation, this was achieved by performing a daily backup to an external hard drive.
Additional backup was made to a remote server after every major modification. Major up-
dates and status reports were downloadable from a website, allowing my supervisors to
keep track of my progress and serving as a useful diary throughout the project.

The dissertation was backed up with a Subversion repository on the Student Run Computing
Facility (SRCF). This provided revision control and further redundancy.

13
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Chapter 3

Implementation

The implementation of the compiler is presented. Important concepts are detailed with ex-
amples. The unit test suite is described. The design of the processor is explained and the
components in its construction discussed.

3.1 The Compiler

The compiler takes a program written in ML* and converts it to memory initialisation files
that can be loaded onto the processor.

ML* is a lazy subset of ML, represented by the abstract grammar shown below.

〈expr〉 := let 〈decl〉 in 〈expr〉 Let expressions
| 〈expr〉 〈binop〉 〈expr〉 Binary operations
| 〈expr〉 〈expr〉 Applications
| fn x => 〈expr〉 Lambda abstractions
| x Variables
| if 〈expr〉 then 〈expr〉 else 〈expr〉 Conditionals
| i Integers

〈binop〉 := + | − | × | > | < | = | !=

〈decl〉 := fun fun_name args = 〈expr〉 Function declarations
| val val_name = 〈expr〉 Value declarations

The compiler accepts as input an ML* program consisting of function declarations, value
declarations and an expression to be evaluated. It should be noted that the declarations are
lazy, meaning that they are only evaluated to a value when required. All components of the
compiler were written in ML, and are explained in the rest of this section.
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3.1.1 The Lexer

The principle role of the lexer is to tokenize the input. Tokenizing is the process of convert-
ing characters representing a program into a stream of tokens. The implementation of the
lexer will not be presented in detail as it follows a fairly standard procedure similar to that
presented in [10].

To implement the lexer, a ML datatype token was created which includes constructors such
as op_plus, num_int of int and semi_colon. Lexing a list of characters then amounts to
creating a function which maps characters onto the appropriate token constructions. The
below example illustrates the lexing of a declaration:

val a = 4; →lex [decl_val, id 'a', op_equals, num_int 4, semicolon]

3.1.2 The Parser

The parser implemented is a recursive descent LL(0) parser. The role of the parser is to take
the token stream produced by the lexer and convert it to an abstract syntax tree (AST) for
each declaration in the program. For ML*, a very simple abstract syntax can be used to
represent an expression. This takes the form of a datatype and is shown below.

datatype AST = Var of string (* Variables *)

| App of AST * AST (* Applications *)

| Lambda of string * AST (* Lambda terms *)

| Int of int (* Integers *)

| Let of ((string * bool * AST) * AST) (* Let expressions *)

| Inl of AST -> AST; (* Used in AST reducer *)

The constructors in the AST should have a fairly intuitive meaning with the exception of the
Inl constructor, the role of which is explained in section 3.2.2, and the Let constructor, which
is explained in more detail below. It should be noted that conditional operators, addition op-
erators, etc. are not represented in the AST in their own right. Instead, they are represented
within the Var expression. For example, the expression:

if b then e1 else e2

will have the AST showing in Figure 3.1 (next page).

An LL(0) parser parses its input from left to right and recurses from the constructs at the
leaves of the tree according to a context free grammar. The first stage in the implementation
of the parser was to construct an unambiguous context free grammar that described the
language and avoided left recursion. A grammar is considered to be left recursive if there is
a production of the form:

〈expr〉 := 〈expr〉 ...
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e2

e1

b
Var(“Cond”)

App(App(App(Var(“Cond”), b), e1), e2)

Figure 3.1: Abstract Syntax Tree for an IF-expression

Implementation of this sort of grammar would fall into non-termination due to the exis-
tence of 〈expr〉 at the left of the production. The context free grammar used for expressions
within the language is presented in figure 3.2. The grammar avoids the issue of left recursion
through the use of the 〈fact〉 symbol, and also expresses arithmetic operator precedence.

〈decl〉 := fun fname fargs = 〈expr〉
| val vname = 〈expr〉

〈expr〉 := 〈fact〉 + 〈expr〉
| 〈fact〉 − 〈expr〉
| 〈fact〉 = 〈fact〉
| let 〈decl〉 in 〈expr〉
| if 〈expr〉 then 〈expr〉 else 〈expr〉
| 〈fact〉

〈fact〉 := 〈atom〉 * 〈fact〉
| 〈atom〉

〈atom〉 := ( 〈expr〉 )
| true | false | i | x
| λx.〈expr〉 | 〈expr〉 〈expr〉

Figure 3.2: Backus-Naur form of the grammar for expressions in ML*

In accordance with the grammar presented, the implementation consisted of the mutually
recursive functions parseDECL, parseEXPR, parseFACTOR and parseATOM.

When the end of a production is reached in the implementation, an AST representing that
particular language construct, plus any leftover tokens, is returned. If the expression does
not parse correctly, an exception is thrown. The exception includes an error message to give
the user an indication of the cause of the problem.
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A program in ML* consists of function declarations, value declarations and an expression to
be evaluated. The parseDECL function converts a function declaration so that the arguments
become lambda abstractions. For example, the function sum:

fun sum n = if (n = 0) then 0 else (sum (n-1));

is equivalent to the following declaration, where val_rec is a recursive value declaration:

val_rec sum = fn n => if (n = 0) then 0 else (sum (n-1));

The parseDECL function returns a value of type (string * bool * AST) where the string
is the declaration identifier, the boolean indicates whether the binding is recursive (i.e. for
functions), and the last part is the AST for the body of the declaration. As is the case in
ML, declarations at the top level of the program are just a convenient syntax for nested let

expressions. For example, consider the program:

fun isZero n = if (n = 0) then 0 else (n+5);

isZero 4;

This is equivalent to the expression:

let fun isZero n = if (n = 0) then 0 else n

in isZero 4

end;

After a declaration is parsed, it is wrapped around the rest of the program with a Let con-
structor. Hence, the AST for the example above becomes:

Let(

(* Declaration definition *)

('isZero', true, Lambda('n',

App(App(App(Var('Cond'),

App(App(Var('Eq'),

Int 0),

Var 'n')),

Int 0),

Int 1))),

(* Let body *)

App(Var('isZero'), 4))

In this way, whole programs can be parsed and converted to a single abstract syntax tree.

3.1.3 The Type System

ML is a statically typed language. It uses the typing discipline presented by Hindley and
Milner [9] to check if an expression is typeable and return the most general type. The imple-
mentation of the type checker for ML* is based on this discipline.
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The algorithm for typeability proceeds by the implementation of a set of inductive rules and
axioms over typing environments, ML* expressions and types. The type system for ML* is
shown in figure 3.3.

The algorithm descends recursively on the structure of expressions, generating constraints
as specified by the type rules. These constraints are enforced through type unification and
substitution. When the inference algorithm is applied to an expression, it returns a pair,
(substitution, type), where the substitution should be applied to the typing environment in
any future inferences, and the type is the type of the expression.

(var �) a
Γ ` x : τ

(int)
Γ ` integer : Int

Γ, x : τ1 ` M : τ2(fn) b
Γ ` λx.M : τ1 → τ2

Γ ` M1 : τ1 → τ2 Γ ` M2 : τ1(app)
Γ ` M1 M2 : τ2

Γ ` M1 : τ1 Γ, x : ∀A.τ1 ` M2 : τ2(let) c
Γ ` let x = M1 in M2 : τ2

aif Γ(x) � τ
bif x /∈ dom(Γ)
cif x /∈ dom(Γ) and A = f tv(τ1)− f tv(Γ)

Figure 3.3: Typing System for ML*

Free type variables can be unified with another type once, but this is not sufficient to allow
for the reuse of functions in a polymorphic sense. For example, consider the code snippet:

let fun ident a = a

in if (ident true) then (ident 4) else (ident 5)

end;

The initial type of the ident function is α→ α, but when unified in its first application, it will
be refined to the type bool → bool. This will not then unify with the integer application in
the second and third application of the ident function. For this reason, ML has polymorphic
type variables. Polymorphic variables are bound by universal quantification indicating that
they can be instantiated to free type variables more than once.

In the implementation, types have the following form:

datatype typ = TInt (* Integer primitive *)

| TAlpha of int (* Free type variable *)

| TAll of int * typ (* Polymorphic type scheme *)

| TFun of typ * typ (* Function type *)
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TAlpha represents free type variables which are uniquely identified by an integer. TAll is
used to implement polymorphism.

In order to infer types, a source of fresh type variables is needed. Consider, as an example,
the (FN)-rule: At the time when the lambda expression is first seen, the type of x is not
known so it is assigned the most general type possible, namely a free type variable. In
my implementation, new free type variables are obtained using an incrementing integer
reference.

The TAll constructor allows polymorphism to be implemented in the following way. The
type (∀α1α2. α1 → α2) would be represented in the type implementation as:

TAll(1, TAll(2, TFun(TAlpha(1), TAlpha(2))))

When a TAll is unified with another type, the type variable bound by the TAll is instantiated
with a new free type variable. So in the previous polymorphic example, the application of the
ident function to a boolean and to an integer will not conflict because, in each application,
the free type variables that unify with TBool1 and TInt are different.

Polymorphic types are created through let expressions. So, as the (LET)-rule describes,
when the type of M1 is found, the implementation iterates over the type and finds all the
free type variables, wrapping the whole type in a TAll constructor for each variable. The
implementation ensures that a TAll can never occur inside a function type.

The function pt takes an abstract syntax tree representing an expression and a type environ-
ment, and returns the substitution used for unification and the type of the expression. It uses
the auxiliary functions defined below to implement the inference algorithm:

Function name Function Role
lookupTYPE x env Find the type of the variable x in the environ-

ment.
create_polys ty Find the free variables in the type and create an

equivalent polymorphic representation.
instantiate_polys ty Assign new free type variables to each of the

polymorphic variables in the type and return
the resulting type.

apply_sub(type,

sublist)

Apply the substitutions in the sublist to the
type.

mgu(typeA, typeB) Find the most general unifier of typeA and
typeB and return the substitution list represent-
ing the unification operation.

assign_env(environment,

substitution)

Apply the substitution to the environment.

This allows the typing of abstract syntax trees. Since full programs are represented as a
single AST, typing of expressions is sufficient to be able to type full programs.

1Strictly speaking, the language has no TBool type, as booleans are implemented in a functional way. Their
use here is purely for the sake of explanation.
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3.1.4 The Combinator Converter

In section 2.1, I presented the Advanced Translation Rules for converting lambda calculus to
combinators. The implementation proceeds in two stages: firstly, the AST is converted to
a form such that the translation rules can be applied, and secondly the actual translation is
performed according to the rules. The datatype for combinators is as follows:

datatype combinator = I | K | S | B | C | Y

| ADD | MULT | EQ | NEQ | GT | LT | SUB

| INT of int

| APP of combinator * combinator;

This corresponds exactly to the instruction set of the processor itself. Integers are repre-
sented explicitly in the AST, as are primitives for arithmetic and comparison. The transla-
tion of these AST constructs can be implemented using a trivial mapping to the associated
combinator, e.g.:

λTx. Var('Add')→ ADD

Unlike integers, boolean values have not been given an explicit combinator representation,
and are encoded in the standard functional way:

true ≡ λx. λy. x ≡ K

false ≡ λx. λy. x ≡ K I

As a result of this, the equality combinator returns true or false as function values. This is
nicely minimal in the sense that no additional primitives are required for boolean logic and
conditionals, and so if-statements can be converted to simple applications, for example:

if (n = 4) then 1 else 2 → (EQ n 4 1 2)

The Advanced Translation Rules for applications and lambda expressions (as can be found
on page 4) do not need adjusting to support the AST for ML*, and can be implemented
verbatim. Variables in ML* present some subtleties to the implementation as they come in
four flavours, as explained in table 3.1 (overleaf).

Built-in variables are mapped directly to combinators (e.g. ADD above), and all other variable
flavours can be converted to lambda-bound variables.

Declaration variables are transformed using let-conversion:

let x = e1 in e2 end → (λx. e2) e1

Recursive variables, as indicated by the is_recursive field in the declaration triple, can be
transformed to lambda-bound variables using an application of the Y combinator:

("fibonacci", is_recursive, declaration_body ) →
App(Y, Lambda("fibonacci", declaration_body ))

Any recursive variables in the declaration_body have now been bound by the lambda abstrac-
tion.
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Variable Class Description
Lambda-bound
Variables

These are any variables which are bound by a lambda abstraction.
Function arguments also fall into this category since these are converted
to lambda abstractions.

Built-in Variables These are variables for expressing functionality such as addition, mul-
tiplication, equality, etc. e.g. Var("Add")

Declaration
Variables

These are variables which reference previous declarations, for example,
the underlined variable in the below:

let a = 4 in a end;

Recursive
Variables

These are variables that reference the function being declared, e.g.:
fun sum n = n + (sum (n-1));

Table 3.1: The 4 variable flavours

The intermediate state of the translation at this stage looks very much like pure lambda cal-
culus, and contains only lambda-bound variables, on which Turner’s translation rules can
operate. The conversion starts from the innermost lambda expression and then propagates
out until the outermost lambda expression is found and the whole program has been con-
verted.

The alternative version of the compiler was also implemented so that, of the basic combina-
tors, only S, K and I were supported.

3.1.5 The Memory Initialiser

A special kind of RAM block called a JTAG block is used to allow program files to be loaded
onto the board from the PC and transferred to the working memory. Three memory initial-
isation files are required, the CAR initialisation file, the CDR initialisation file and the SPECIAL

initialisation file. The CAR and CDR initialisation files correspond to the left and right sides
of each node in the tree, as explained in section 2.5. The SPECIAL file indicates where the
program ends and the free memory chain begins. The free memory chain is a linked list of
the unused cells that resides in the CAR partition of the memory.

Application is represented in the underlying structure of memory. If the value of the CAR

memory in some cell is A and the value of the CDR memory in that same cell is B, then
this has the implicit meaning “apply A to B”. Each combinator has a designated opcode, as
explained in section 3.3. If an application consists of primitive combinators then it can be
trivially mapped to memory through the insertion of the associated opcodes, as indicated by
figure 3.4.

Memory Cell:

CAR CDR

OPCODE_S OPCODE_K

(S   K)

Figure 3.4: Mapping simple combinators into memory
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In an expression of the form APP(A,B), A and B may themselves contain further applications.
In this case, we must first establish A and B into their positions in memory, and then create
a pointer to them in the current APP cell.

0000:

CAR CDR

Represents A in 

memory

Represents B in 

memory

Current Cell

Key

Figure 3.5: Mapping APP(A,B) in memory

Establishing combinator expressions into their appropriate positions in memory (i.e. in the
memory initialisation files) is done using a function called make_MIF. It takes the input com-
binator expression and appends it to the MIF file (which represents a contiguous memory
block), returning the address that can be used to reference that expression. So for APP(A,B),
the function first maps A into memory, then saves the address to reference A and does the
same for B, finally instantiating the cell to point to A and B. Figure 3.5 illustrates this dia-
grammatically.

3.2 The Unit Tests

The unit tests were all written in ML, and comprise a test suite which can be used to check
different aspects of the compiler.

3.2.1 Pretty Printer

The Pretty Printer takes an abstract syntax tree and turns it into a string that is semantically
equivalent to the original program. This is a simple process of identifying mini-ASTs that
correspond to particular programming constructs and filling in the concrete syntax. The
pretty printer is useful for ensuring that the parser has interpreted the expression correctly
and serves as a basic sanity check.

3.2.2 Abstract Syntax Tree Reducer

The AST reducer takes an abstract syntax tree produced by the parser and evaluates it. It
does this by repeatedly performing single reduction steps until a value (integer or lambda
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term) has been obtained, which is then returned in the form of an AST.

Built-in operations, such as integer arithmetic, are looked up in the initial environment and
use the reserved Inl constructor. For example, the addition operator looks as follows:

Inl(fn a => (case a of Int(i) => Inl(fn b => (case b of Int(i2) => Int(i+i2)))))

The AST reducer was particularly useful at the start of the project and during the initial
verification of the parser. Later in the project, I found the software combinator reducer more
useful as it was more closely related to the reduction mechanism of the processor.

3.2.3 Software Combinator Reduction

The Software Combinator Reducer takes a program in the form of a combinator stream from
the combinator converter and reduces it to a value. Again it uses the single-step reduction
method, and does this repeatedly until no more reductions can be performed. The algorithm
is fairly straightforward as it simply applies the relevant combinator reduction rule. The
snippet of code below shows the reduction of an S combinator in the reducer. The boolean
in the returned pair indicates that a reduction occurred.

reduce_single(APP(APP(APP(S, P), Q), R), env) = (true, APP(APP(P,R),APP(Q,R)))

3.3 The Instruction Set Architecture (ISA)

Instructions for the processor are fixed length 32-bit instructions. There are 3 classes of in-
struction: application instructions, combinator instructions and integer instructions. The classes
of instruction are distinguished by an opcode in the top two bits of the instruction. The
format of instructions in each class is described below and in figure 3.6.

Application Pointer Instructions: These are pointers to other cells. The combinator APP(A,B)
is represented by two instructions, one in the CAR portion of the cell pointing to A and one
in the CDR portion of the cell pointing to B (assuming A and B are pointers and not simple
combinators). Note that a cell’s address refers to both the CAR and CDR partitions, so a cell
always contains two instructions.

Combinator Instructions: These perform a manipulation of the graph in memory. These
instructions represent the basic combinators S, K, I, B, C and Y, and the arithmetic operators.

A full list of the OP_comb codes for the basic combinators and the OP_arith codes for the
mathematical ones can be found in appendix C.

Integer Instructions: These represent 28-bit integer primitives.
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0 1

31 : 30 29 : 28 27 26 : 20 19:0

Addrb

b

Addr

Bit value indicating if memory location is off-chip

Address of memory location

1 1

31 : 30 29 : 28

27 26 : 8 7 : 0

OP_comb0

d

Combinator (S, K etc.) identifier

27 26 : 12 7:0

OP_arith1

11

d

10 : 8

args

{

OP_comb

OP_arith

args Number of arguments reduced for arithmetic operator

Bit indicating if arithmetic operator takes one or two 

arguments

Arithmetic operator (+, -, etc.) identifier

1 0

31 : 30 29 : 28 27 : 0

int_val

int_val

28 bit integer value

APPLICATION 

INSTRUCTION

COMBINATOR 

INSTRUCTION

INTEGER 

INSTRUCTION

unused

opcode

Figure 3.6: ISA: Instruction format
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3.4 The Processor

The processor was written in Verilog and consists of six logically separate components that
interact in order to perform the required reduction functionality. These are:

• The core of the processor: the reduction engine

• The on-chip memory unit and the memory management unit

• The off-chip communication interface: the SDRAM arbiter

• The memory initialisation and reprogramming interface

• The results interface

• The garbage collector

For the processor to work, all of these units have to be able to pass control smoothly between
them.

3.4.1 Overview

The main purpose of the processor is to perform the combinator reduction in hardware. To
do this, a facility is required to initialise the memory and read the results. Figure 3.7 shows
the life cycle of the fully-fledged processor.

Initialise 

memory

Reduce 

Program

Finish initialisation

Garbage 

Collect

Read 

results

Finished

reduction

Run out

of memory

Freed memory

Reprogram

processor

Figure 3.7: The life cycle of a fully-fledged processor
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The processor first has to be initialised with a program for it to reduce. This is done using
the JTAG modules. The initialisation protocol can be found in appendix F and describes
how the switches can be used to load a program onto the board. Once reduction has started,
the processor runs automatically until reduction is complete, periodically garbage collecting
when it runs out of memory. The results of the reduction can be displayed on the HEX
display or read back to the host PC using a protocol similar to that used during initialisation.

A high level overview of the processor is shown in figure 3.8. There are three routes of
execution which I will refer to as normal execution (the top route in the diagram), combinator
execution (the middle route) and arithmetic execution (the bottom route).

Verilog is a high-level language, based fundamentally on the parallelism of the hardware
it is targeted at. The notion of time is imposed by global clocks, registers and pipelining.
However, the reduction architecture implemented has a limit on the amount of parallelism
it can exploit due to the memory accesses that must be performed. A RAM block on the
FPGA can be instantiated to have two read ports and a single write port. Since the CAR and
CDR memory partitions are mapped onto different RAM blocks, two reads and a single write
to each partition can be performed in a single clock cycle.

The architecture must therefore have a control structure which maximises what can be done
in a clock cycle, but yet obeys the limits imposed by the memory structure. The aim of fig-
ure 3.8 is to illustrate how control can be exerted by multiplexing paths of execution through
the use of control registers.

3.4.2 Normal Execution

When the processor is in a normal execution mode, it walks the combinator tree to find the
next combinator to execute. Once a combinator is found, the processor changes into a differ-
ent mode depending on which class the instruction belongs to. If an integer value is found,
execution terminates and the processor proceeds to tidy up the graph. When a combinator
instruction is found, it sets up the control registers such that the next cycle will be in combi-
nator execution mode. To avoid wasting a memory cycle, the processor also performs the first
stage of that combinator’s execution. This is called the preprocessing stage.

In order to establish which action to take, the instruction in the CAR partition of the memory
cell indexed by the P pointer must be retrieved. The P pointer always points to the current
instruction. The opcode in the top two bits of the instruction determines its class. If it is
a combinator instruction, then its 27th bit can be used to distinguish between arithmetic
operators and basic combinators.

If an arithmetic operator is found, the processor sets the control registers to force the transi-
tion to arithmetic execution mode: do_arith is a register indicating that the processor should
perform arithmetic execution, arith_op is a register indicating what the arithmetic opera-
tor is, and arith_stage indicates what stage of execution the processor is currently on. A
similar set of registers exist to force a transition to combinator execution mode. The preprocess-
ing stage will be explained in the combinator and arithmetic section because it is easier to
understand in that context.

If the instruction is an application pointer, the processor stays in normal execution mode and
follows the pointer. As the pointer is followed, the tree is rearranged so that the processor
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Figure 3.8: Processor Architecture Overview
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can retrace its steps. The process to do this was explained briefly in section 2.5, but we will
consider it more specifically here.

Note that in the below I have used the Verilog style of non-blocking assignment – all of the
above items occur simultaneously, so the values will all be updated for the next clock cycle.
The process is as follows:

• Set the value held in CAR[P] to the back pointer, so we can retrace our steps:
CAR[P] <= B;

• Update P to the value held in the current cell: P <= CAR[P];

• Update B to point to our current cell: B <= P;

CAR CDR CAR CDR

B

P B

P

Before instruction applied: Effect of instruction:

Memory cells unaffected by instruction

Figure 3.9: Effect of an application instruction

This process is also shown in figure 3.9.

So, in order to execute this instruction, a read from B and a read from P must be performed,
as well as a write to the cell pointed to by P. This is exactly 2 reads and one write to the CAR

partition and hence only requires a single clock cycle to execute.

3.4.3 Combinator Execution

The combinator execution part of the processor was responsible for the reduction of the
S,K,I,B,C and Y combinators. I will illustrate the implementation strategy used to perform
one combinator reduction as an example. Consider the application of a C combinator as
shown below:

C P Q R→ P R Q

This needs to be done in a way that will leave all the memory cells unchanged except for the
cell at the root of the tree. To avoid having to reperform this reduction, the root of the subtree
that corresponds to the combinator and its arguments, is overwritten with the reduced result.
All other nodes in this subtree are preserved to allow for the presence of shared pointers.
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Stage 0:
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Before reduction:

The stages of reduction are shown in the margin of this page. Ini-
tially, when we first find the combinator, the tree is in the state
shown at the very top right of the page, and we need to transform
it to the bottom stage. In this Before Reduction stage, there is no
direct pointer to the R tree, so we need to retrace our steps a bit,
restoring the tree at the same time. The process of retracing back
up the tree is referred to as unwinding. In the pre-execution stage
(the stage that happens in normal execution mode), the following
occurs:

• Unwind: B <= CAR[B]; P <= B;

• Store the first argument in a register: arg1 <= P

• Restore the tree: CAR[B] <= P;

This creates the tree shown under pre-execution stage. The effect
of restoring the tree is shown in the purple circle in the diagram;
this tree now looks like an unreduced tree. After the pre-execution
stage, the processor moves to combinator execution mode to per-
form the remaining stages of reduction. In this stage, the remain-
der of the arguments must be retrieved, a free memory cell must
be obtained and we must unwind the tree a stage further. To get a
free memory cell from the free memory list, the following must be
performed:

1. Create a pointer to the cell indexed by register F, the free
memory pointer. This cell is our new “free cell”. Read from
the cell indexed by F.

2. Set F to the cell indexed by F, effectively performing a “tail”
operation on the linked list.

The above must be done in two cycles. In this stage we can create
the pointer to the free memory cell by doing a write to CAR[B] with
the value of F. To utilise the full memory bandwidth, the tree is
also unwound a step in this stage. Finally, the third argument, R,
is stored in a register and the value of the second argument, Q, is
written to CDR[B]. The results of this stage are shown in the Stage
0 tree. Note, in particular, that the tree that we restored has now
been completely separated from our working tree.

All that remains is to instantiate the free cell with the relevant CAR
and CDR values. Thus in Stage 1, we simply write to the free cell that
was claimed, with the first and third arguments that were stored,
i.e.:

CAR[FREE] <= P; CDR[FREE] <= R;
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Reduction of the C combinator is now finished and the resulting tree is shown at the bottom
of the diagram. The orphan tree has been restored and abandoned, allowing any existing
pointers to the subtree to be unaffected by the combinator application. The control registers
of the processor are reset so that control returns to normal execution mode.

Similar procedures apply to the other combinators. The execution time of different combi-
nators is determined by the number of memory accesses they require to perform the appro-
priate graph manipulation.

3.4.4 Arithmetic Execution

In section 2.5, I mentioned an issue that arises with arithmetic execution due to the lazy
nature of combinators, and I will now explain how this issue was handled in the imple-
mentation. The underlying principle of the solution is to divide each arithmetic operator
into k + 1 operations, where k is the number of of arguments taken by that operator. The
operator functionality then depends on how many arguments it has reduced.

We consider the case of the plus operator which has two arguments. If no arguments have
been reduced, then the functionality of the operator is to rearrange the graph in such a way
that its first argument will be reduced. The resulting integer does not cause termination
of reduction as it is an integer argument rather than a value. Integer arguments and integer
values are distinguished by probing what they are being applied to. If a partially executed
arithmetic operator is found in the right-hand side of the cell, it has to be an integer argument
and the processor rearranges the graph so that the next bit of reduction can be performed.

+0 A

B

...

A

B

...

+1

B

...

+1IntA

...

+2

IntA

B

...

+0IntA

IntA+B

P

Figure 3.10: Arithmetic reduction implementation

Figure 3.10 shows the sequence of trees through which arithmetic reduction progresses. Note
that the trees are not consecutive in processor cycles as multiple steps may be required be-
tween stages. In particular, the reduction of either of the arguments involves the reduction
of potentially large trees to an integer before the next stage of the tree is reached. We can
clearly see, however, that the problem of laziness within the setting of arithmetic has been
solved, and it has been done in a stack-free way.

3.4.5 Execution Termination

Execution termination performs exactly the opposite of application instructions and walks
back up the tree, restoring it at the same time. This continues until the root of the tree is
found, where execution terminates.
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3.4.6 On-chip Memory Model

In the explanation of the processor implementation, an array access model of memory has
been assumed. That is, we have assumed that we can say P <= CAR[B]. This was the model
of memory used in the first few iterations of the processor since it is the most intuitive and
easiest to work with. This sort of memory model is supported by the synthesis tool, Synplify.

Communication with the off-chip SDRAM occurs through the use of a SDRAM module
which can be instantiated through Quartus’ SOPC builder. Synplify’s support for Quartus’
auto-generated SDRAM controller files is temperamental. In particular, it shows irrational
behaviour when using a 32-bit controller and fundamentally does not appear to meet the
functional specification laid out by the Quartus documentation. As a result, I decided to
port the processor to Quartus.

Quartus does not support the inference of RAM from arrays to the same degree as Synplify,
and insufficiently for the processor. To use the on-chip RAM in Quartus, RAM modules have
to be instantiated with explicit signals for reads and writes. This was quite a substantial
change; the code below shows a memory access using the array style of memory and using
the explicit RAM model:

Array Model Explicit RAM model
P <= CAR[P]; if (start) begin

car_rd_addr1 <= P;

start <= 0;

end else begin

P <= car_rd_data

end

From this example, we can see that the explicit model of RAM takes two cycles while the
array model takes only one. This transformation is detrimental and in the worst case, could
cause the processor performance to halve. So instead, the implementation aims to mimic the
array access method to reduce performance loss. This was done by carefully clocking the
RAM module relative to the processor clock. The crucial trick is to clock the RAM module
twice as fast as that of the processor, skew it such that the values can be read from the RAM
before the negative edge of the processor clock, and update the general purpose pointers B,
P and F on the negative edge. Figure 3.11 illustrates the example with the new model:

PROCESSOR CLOCK

RAM CLOCK

1. 2. 3.

s

1. Processor asserts ‘read from P’

2. Fast RAM finished reading, 

processor updates value of P

3. Processor ready for next 

operation – one clock cycle 

after the read!

s Skew between the two clocks

Figure 3.11: On-chip memory model
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Quartus’ use of explicit signals to perform communication with the on-chip memory is very
similar to the signals used to communicate with the SDRAM controller. This meant that
integrating off-chip communication with the existing model was made much easier by the
transition from Synplify to Quartus.

3.4.7 Off-chip Memory

The SDRAM on the FPGA board has 8MB of storage which is much larger than the 60KB
available on-chip. Communication with the SDRAM has already been mentioned, so I will
assume that we have a working SDRAM controller to perform the communication, and dis-
cuss the SDRAM arbiter that was built to interface between the controller and the processor.

In the on-chip model, a maximum of six memory operations can be performed per processor
clock cycle, namely two reads and a write to the CAR partition, and the same to the CDR par-
tition. Consequently, the SDRAM arbiter takes a maximum of six operations, executes those
that are required and stalls the processor while they are performed. The reduction mech-
anism of the processor is abstracted away from the level of memory accesses through the
use of logical addressing. This modularisation is useful for testing and simplifies operation
significantly.

For every logical memory request, a part of the processor, the MMU (Memory Management
Unit), is responsible for determining if the access is on-chip or off-chip and then propagates
the appropriate signals to each section (either the two RAM partitions or the off-chip mem-
ory). This propagation of signals is all done combinatorially, so no extra delay is incurred.
The arbiter selects between the memory requests so that read requests are performed before
write requests. Figure 3.12 illustrates how the different parts of the design were connected
to implement off-chip communication.

PROCESSOR DRAM

ARBITER

SDRAM

CONTROLLER

ON-CHIP RAM

Logical to 

physical address 

translation

CONTROL

DATA

STALL

6

6*32

TO THE 

SDRAM

CHIP

Figure 3.12: Off-chip memory model
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3.4.8 Garbage Collection

The memory on the off-chip SDRAM is divided into two partitions, and on each garbage
collection, the working memory switches between the spaces. The idea of the copy garbage
collection algorithm is to copy the working trees into the new space. The working trees are
defined as those trees indexed by the B or P pointers.

The method used is a stackless one. On each iteration of the algorithm, a single pointer is
followed and the referenced cell copied. This continues until all reachable cells have been
copied into the new space.

The algorithm for non-recursive garbage collection was first presented by Cheyney [7] in
1970. The implementation essentially involved the translation of his algorithm into Verilog
while ensuring that memory accesses fit into the existing memory model. Figure 3.13 shows
the effect of garbage collection on the graph in memory.

BEFORE GC: AFTER GC:

On-chip Memory On-chip Memory

Old Off-chip 

Partition

New Off-chip 

Partition

F
R

E
E

F
R

E
E

Figure 3.13: Garbage collection

Garbage collection is triggered automatically when the free memory pointer, F, exceeds the
maximum address. Once the working set has been copied, the processor is set up so that
reduction can begin again. The implementation does this with the following steps:

• Redirect P and B to point to the new off-chip partition where their working trees now
reside.

• Reinitialise the free memory chain by iterating over the free memory cells, starting
with the on-chip memory, which is now completely free, and then working through
the off-chip memory from the point where the working tree ended.
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• Redirect F, the free memory pointer, to the first cell of the on-chip memory. At this
point, garbage collection ends and reduction resumes.

3.5 Drivers and Imperative Features

ML is a functional language that supports imperative features. As an extension to the project,
I added some simple functionality to allow imperative features to be added to the processor.
These are left sufficiently general to allow the programmer to control their use.

In conventional processing and operating systems, drivers are written to allow the program-
mer to access the functionality of external hardware. In my processor implementation, IN
and OUT combinators are added to allow the user to access some functionality outside the
scope of the processor itself. The IN combinator takes an integer and returns an integer and
the OUT combinator takes an integer and a continuation, where the integer is the port to be
accessed and the continuation is what to do after that access has taken place. There are sev-
eral variants of the OUT combinator to allow the programmer to pass more arguments to the
driver than just the port number. The functions OUT and IN are also added to the compiler to
allow full support through the toolchain.

It is left up to the designer to decide how they will specifically wire in extra modules, or
drivers, to the processor which use the IN and OUT combinators. In my implementation,
I wrote drivers to allow the IN and OUT combinators to access the switches and VGA re-
spectively. The port provided to the IN combinator dictated which switch will be accessed,
returning an integer that is 1 or 0, and a variant on the OUT combinator takes 3 integer argu-
ments which are used by the driver as the x-coordinate, y-coordinate and colour of the pixel
being set on the screen. The VGA driver stores the pixel values in its own section of memory
and updates the memory array according to the OUT instructions. A renderer then sets the
pixels on the screen according to the values held in the memory array.

The particular drivers I implemented were needed for the applications in section 4.2.2, but
different drivers could be written for other purposes. Standard ML supports references
which allow state to be kept independent of function applications. It is plausible that ref-
erences could be expressed using the IN and OUT instructions. If a driver were written to
allow user programs to have their own “heap” which could be accessed via variants on IN

and OUT instructions, then the compiler could effectively translate reference accesses to heap
accesses through the IN and OUT instructions.
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Chapter 4

Evaluation

Performance analyses of several aspects of the processor are presented. A comparison to a
current research implementation is made. Finally, two example applications are presented,
demonstrating the computational power of the processor and how the system as a whole
can be used to run large ML* programs.

4.1 Performance Analysis

Incrementing counters were added to the processor design to obtain the statistics of various
aspects of the computation. This allowed the benchmarking of programs on the CPU by
tracking the number of execution cycles. Cycle count can be trivially converted to seconds
by dividing by the clock rate of the processor (10 MHz). The tables for all results can be
found in appendix D.

4.1.1 Basic Performance

The processor performance was analysed with a simple recursive program which naïvely
computes the Fibonacci sequence. The implementation in ML* is shown below.

fun fib n =

if (n = 0) then 0 else

if (n = 1) then 1 else ((fib (n-1)) + (fib (n-2)));

The graph in Figure 4.1 shows the number of cycles taken to calculate fib n. The black bars
show the performance on a basic version of the processor, and the grey bars on an optimised
version, using twice the amount of on-chip memory.

The results for the unoptimised version can be divided into four regions. I will discuss each
region in turn before looking at the overall performance and the effect of increased on-chip
memory.
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Figure 4.1: Fibonacci performance

Region 1

If we look at the code for the Fibonacci function, it is logical that fib 0 and fib 1 will have a
shorter execution time than any other values since no recursive calls are required to perform
their calculation. This is supported by the graph as the cycle times to calculate fib 0 and
fib 1 are small.

Region 2

Region 2 of the results corresponds to values of fib for which only the on-chip portion of
memory is utilised to calculate the result. The blue line shows the best fit function for the
cycle values in this region. The equation of this line is a× (bn), where a and b minimise the
error of the best fit line, and were respectively found1 to be 157 and 1.700.

Hence, the time complexity of calculations in this region is Θ(1.7n). The tight bound for
the Fibonacci algorithm can be found [5] as Θ(1.618n). So, taking into account experimental

1Calculation for best fit performed using the fit facility in gnuplot
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variations and a certain margin of error, the values of cycle time in region 2 fit the complex-
ity of the processed function, and indicate that the processor is scaling to perform larger
computations in a predictable way.

Region 3

Calculation of fib for (n ≥ 8) requires the utilisation of the off-chip memory. This is reflected
in the graph as there is a substantial increase in cycle time for fib 8 which does not fit the
pattern displayed in region 2. Approximately thirteen times as many cycles are required to
compute fib 8 as are required to compute fib 7.

In section 3.4.6, I outlined how the on-chip memory model can perform six memory oper-
ations in parallel per cycle, while the off-chip model must perform them sequentially. We
would therefore expect performance to decrease by approximately a factor of six when the
off-chip is used. In addition, the computation itself should have approximately twice as
many recursions, which means we would expect fib 8 to take around twelve times as long
as fib 7, which is indeed the trend observed in the data.

Region 4

In region 4, the computation is occurring primarily in off-chip memory. It has once again
returned to the stable complexity pattern seen in region 2 and as such, the red best fit line
has a very similar gradient to that of the best fit line in region 2.

Summary

As the above results demonstrate, the processor exhibits rational computational behaviour
in the context of its implementation; the pattern of this behaviour is dictated by the program
and its memory requirements. The impact of using twice the amount of on-chip memory is
clearly reflected in the graph, as the “jump”, due to the utilisation of off-chip memory, does
not occur until fib 10.

Clearly, the code for fib is naïve so we would not expect it to perform efficiently. However,
the example illustrates that the processor has the ability to perform computations with a
significant recursive overhead.

The use of off-chip memory results in a noticeable degradation of performance. So far, how-
ever, the computation has not required garbage collection. We will now look at the effect of
garbage collection, and how it can help to make performance scale more elegantly.

4.1.2 Garbage Collection

Garbage collection serves to compact the working set into a new partition of off-chip mem-
ory and means that the on-chip memory can be reused in future computation. Thus, it may
be desirable to perform garbage collection frequently, if the overhead of performing garbage
collection is outweighed by the gains from the more frequent reuse of on-chip memory. To
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see the effect of this, we consider the time to execute a benchmark program while varying the
garbage collection trigger point, the threshold amount of off-chip memory that is used before
garbage collection occurs.

I performed this analysis using the benchmark program isPrime, which takes an integer and
naïvely computes whether that integer is prime. The program uses repeated subtraction to
implement a remainder function, and iterates over all values up to the integer being tested
to see if any of them are divisors. The ML* program can be found in the appendix B. We will
look at running isPrime 1477, which requires one garbage collection in order to complete
the computation when it is using all available off-chip memory. The program terminates
returning true.
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Figure 4.2: The effect of the garbage collection trigger point on the computation time

The graph in figure 4.2 shows the total number of cycles taken to calculate isPrime 1477.
The garbage collection trigger point starts off at around 1,000, meaning that garbage collection
will occur after 1,000 words of off-chip memory have been used. This ranges up to the full
off-chip memory, increasing by a factor of two for each result taken.

The results are interesting and not immediately intuitive. When the trigger point is set to a
small value, the computation takes the least time. Recall that part of the garbage collection
process is the reinitialisation of the free memory chain, allowing reuse of the memory that
was freed during GC. To do this, the processor must iterate over the working partition of
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memory. This working partition is proportional to the GC trigger point and hence a smaller
trigger point value results in less of an overhead from GC.

Based on the analysis so far, it might be expected that the performance will degrade further
with greater values for the GC trigger, however this is not the case. Looking particularly
at the last two values in the series, we can see that the use of the full off-chip memory is
quite significantly better than only using half of the off-chip memory and garbage collect-
ing more frequently. In this case, we have the converse of what was happening for the low
values of the trigger point. The garbage collection overhead is now much more significant
due to larger trees residing in the sections of memory to be garbage collected, and due to the
overhead of reinitialising the working partition with the free memory chain. In the penulti-
mate result of the series, two garbage collections are performed, while in the last only one
is performed. The last result therefore outperforms the penultimate one, as it does not have
to incur the overhead of garbage collection twice for relatively small gains in the use of the
on-chip memory.

The results discussed are specific to the combinator tree for isPrime 1477. The exact GC
trigger point that will produce the fastest results varies per program, as it depends on the
time taken to garbage collect the working set. For this reason, the garbage collection trigger
point was made a parameter in one of the initialisation files.

As already discussed, one of the major overheads of garbage collection is the reinitialisation
of the free memory chain. Since the garbage collection scheme implemented compacts the
tree into a single portion of the off-chip memory, it is not in fact necessary to use the free
memory chain at all – essentially, the free memory pointer can just be incremented to retrieve
a new free cell.

Performing this optimisation was found to substantially improve results. The improvements
found from testing isPrime 1477, with the GC trigger set to the maximum, found the below
improvement in results. The time spent performing garbage collection has reduced by factor
of 1,000 (this makes sense as the reinitialisation of the free memory chain requires hundreds
of thousands of memory accesses).

Unoptimised Optimised
Cycles (×103) spent doing garbage collection 14,596 12
Cycles (×103) spent doing total calculation 650,510 622,776

This optimisation is specific to a compacting garbage collection scheme and cannot be ap-
plied in general. If, for example, a parallel garbage collector was implemented, then the free
memory chain would have to be used.

4.1.3 Comparison to Other Architectures

It should be noted that the original proposal suggested a comparison to a C++ software
version of the processor. However, it seemed more interesting to compare against an existing
external implementation.
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The Reduceron Series

Recently, a research project looking at the implementation of Haskell on graph reduction
machines has been undertaken by Naylor et al. at the University of York. The project is on its
third iteration of development [4]. The Reduceron1 is a graph reduction machine that works
on a similar set of basic combinators to my implementation. There is little published material
available about this iteration of development as it served as a proof of concept for Naylor’s
PhD. It did not have a garbage collector and was only tested on a few examples. The second
Reduceron is significantly more complex than the first prototype. The reduction mechanism
[12] uses multiple stacks and a heap in order to perform reduction and has complex on-chip
optimisations to improve efficiency. The Reduceron2 no longer operates on simple combina-
tors, but instead uses a method of supercombinators and template instantiation, which is
beyond the scope of this dissertation. Neither the Reduceron1 nor the Reduceron2 utilise the
off-chip memory of the FPGA. Table 4.1 summarises some of the comparable features of the
Reduceron1, the Reduceron2 and my implementation.

Feature Reduceron1 Reduceron2 My Processor
FPGA synthesized on Xilinx Spartan IIe Xilinx Virtex II Altera DE2

Teaching Board
Instruction Format Combinators Supercombinators Combinators
Supports Garbage Col-
lection

No Yes Yes

Maximum Clock Speed 25 MHz 91.5 MHz 10 MHz
Utilises Off-chip No No Yes

Table 4.1: A comparison to the Reduceron project

Efficiency and Performance

The Reduceron project and my project approached the graph reduction problem on FPGAs
from two different perspectives. The Reduceron project focuses primarily on performance
and efficiency while the focus in this project was that of scalability. The architectures are
quite different as a result of this decision.

The results provided by the research group at York suggest that my implementation outper-
forms the Reduceron1 by approximately a factor of four in clock cycles while the calculations
remains on-chip. The number of clock cycles to calculate fib 3 using my implementation
and the Reduceron12 is shown below. This factor of four performance difference would be ex-
pected to roughly remain the same for larger values of fib while the computation remained
on-chip in both cases.

The Reduceron1 My Project Implementation
fib 3 3328 694

The Reduceron implementation uses substantially more on-chip memory than my imple-
mentation - more specifically, a Xilinx Virtex board has approximately 126KB of memory

2Comparison made based on results published on the Reduceron website [4]
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compared to the Altera DE2 board which has only 60KB. In my implementation, computa-
tion remains on-chip until fib 7 (or fib 9 if the amount of on-chip memory is doubled),
while the Reduceron can compute fib 10 on-chip.

The Reduceron2 is a much more powerful implementation than the Reduceron1. In the cal-
culations of fib, the Reduceron2 outperforms my implementation by a factor of six in clock
cycles while the computation remains on-chip. I suspect the primary reason for this differ-
ence is the greater amount of parallelism exploited by their design in accessing the on-chip
memory.

Architectures and Scalability

As already explained, the Reduceron2 is a stack-based reduction machine with multiple stacks
and a heap. To improve the efficiency of the Reduceron2 implementation, block RAMs on the
FPGA are cascaded. The values read from the cascaded RAM blocks can then be rotated in
order to retrieve the whole word required for execution. This is a similar principle to that
used in this project where the memory is divided into CAR and CDR partitions in order to
exploit the underlying parallelism of the RAM blocks on the FPGA. The research at York
has pushed this parallelism to a much higher level than in my implementation. One of the
advantages of the stack model in the York implementation is that it provides more natural
parallelism in the memory accesses, since each stack and the heap can be accessed simulta-
neously.

The Reduceron only uses on-chip memory. This was motivated in part by the large on-
chip resources that were available on the FPGA being used. Naylor acknowledges3 that the
utilisation of the off-chip memory using a Reduceron style of reduction would have to be
done carefully to avoid large performance degradation due to the latency of the off-chip
memory. My project has gone some way towards demonstrating how this can be done,
with the on-chip resource being reused through garbage collection. Using a stack-based
architecture makes the utilisation of the off-chip partition more difficult, as each of the stacks
and the heap would need to be able to spill over cleanly into the off-chip memory.

The Reduceron is limited to supporting programs with 4K words on the program stack.
In comparison, this implementation allows programs of 250K words to be supported. The
stack-based architecture also puts a limit on the depth of recursion and computation that
can be supported. In the Reduceron2, the maximum heap size is 32K words (in the Reduc-
eron implementation, the heap is used to reduce the function currently being applied). My
implementation does not have a limit on the computation and recursion depth it can per-
form, provided that the program fits into the off-chip partition.

Finally, we look at the language subsets of ML and Haskell accompanying this project and
the Reduceron2. The Reduceron’s subset of Haskell supports the declaration of datatypes,
which is something that my ML* compiler does not support. Programs running on the Re-
duceron2 must return an integer. This is not required in my implementation, though it is
the most readable form of output. The user can, however, retrieve the tree returned by the
reduction through the use of the JTAG functionality on the processor.

Finally, the Reduceron does not support imperative features. My project has gone some way
towards this with the use of the IN and OUT combinators. It would be possible to use these

3Personal correspondence, 27 April 2009
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features to write a program in ML* that displayed the output of a reduction tree on a screen
connected to the FPGA.

Summary

It is clear that the optimised Reduceron2 outperforms my implementation. However, I hope
I have demonstrated that this implementation and design scales to use the off-chip partition
of memory more easily than that of the Reduceron. I have tried to demonstrate the way
in which the focus of the two projects has caused their designs to differ, with the Reduc-
eron project focusing on increasing the parallelism to improve efficiency, and this project has
focused on using a relatively simple model and making it capable of using off-chip memory.

4.2 Applications

So far, I have concentrated on evaluating small benchmark programs on the processor. In
this section, I present two larger programs written in ML* to illustrate the system as a whole.
The two applications presented are NQueens, a list processing exercise, and Ponginator, the
classic paddle-ball game.

4.2.1 NQueens

The NQueens problem aims to find the number of ways of positioning n queens on a chess-
board which is n × n in size so that they cannot capture one another. The below diagram
shows one solution to the problem when n equals 5.

To perform this calculation in ML, each solution is presented as
a list – each column of the list represents a column of the board,
and the value held at that list element is the row that the queen
can safely reside at. For the example, presented above, its list
representation would be [4,2,5,3,1]. The solution then uses
recursion to solve the smaller (n− 1) problem down to the base
case of a single element board. Once the (n − 1) solutions are
found, the algorithm evaluates which row positions would be
safe for a nth queen to go in.

In ML*, lists are not primitives, so a lambda calculus represen-
tation of lists is used. There are multiple ways of representing lists in the lambda calculus,
and the representation used in the ML* NQueens program is shown below:

fun cons h t = fn x => fn y => ((x h) t);

val nil = fn x => fn y => y;

fun head xs e = xs true e;

fun tail xs e = xs false e;

fun isNil xs = xs (fn h => fn t => false) true;
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(∗ L i s t p o s s i b l e row v a l u e s a queen c o u l d be p o s i t i o n e d in ∗ )
fun fromAtoB p q =

i f ( p > q ) then n i l e lse
l e t val r = ( fromAtoB ( p + 1) q )
in ( cons p r )
end ;

(∗ Make a s i n g l e e l e m e n t l i s t ∗ )
fun s u c c e e d n = cons n n i l ;

(∗ D e t e c t i f t h e l i s t i s a s o l u t i o n ∗ )
fun i s S o l u t i o n s t = ( ( l e n g t h s ) = t ) ;

fun a b s w z = i f (w > z ) then (w − z ) e lse ( z − w) ;

(∗ I d e n t i f y i f a p a r t i c u l a r p o s i t i o n i s s a f e ∗ )
fun i s _ s a f e bs bn =

l e t fun no d i ag bi b l s t =
b l s t

( fn h => fn t =>
i f ( ( a b s bn h ) != bi ) then ( no d i ag ( b i +1) b )

e lse f a l s e )
n i l

in
i f ( not ( member bn bs ) ) then ( no d i ag 1 bs ) e lse f a l s e

end ;

(∗ R e c u r s i v e l y compute t h e s o l u t i o n ∗ )
fun nqueens en =

l e t val enumN = fromAtoB 1 en
in

( l e t fun s o l u t i o n s F r o m es =
i f ( i s S o l u t i o n es en ) then ( s u c c e e d es )
e lse ( c o n c a t

( map s o l u t i o n s F r o m
( map ( fn eh => cons eh es ) ( f i l t e r ( i s _ s a f e es ) enumN ) ) ) )

in s o l u t i o n s F r o m n i l
end )

end ;

(∗ Find number o f s o l u t i o n s t o 5x5 prob l em ∗ )
l e n g t h ( nqueens 5 ) ;

Figure 4.3: The NQueens Application
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Part of the ML* version of the NQueens problem is in figure 4.3. The remainder of the code
can be found in appendix B.3 which shows how various ML primitives are implemented us-
ing this list representation. We can see that it represents a non-trivial program. The conver-
sion of this program into combinators by the compiler takes under ten seconds and produces
multiple batches of output files that can be loaded onto the processor.

Running this program on the processor returns the value 10 indicating there are 10 possible
ways to position 5 queens on a 5× 5 board. The head and tail functions can be used to
iterate through the solutions, for example to find the position of the queen in the first column
and in the first solution, the last line of the code would be changed to:

head (head (nqueens 5));

4.2.2 Ponginator

Ponginator (combinator pong) is a one-player combinator version of the classic paddle and
ball game. The user controls a paddle with a switch on the DE2 board and has to prevent
the ball from going past the paddle and losing the game. The user aims to maximise their
high score by staying alive for as long as possible. The game itself is very simple to play, but
to run it on a combinator processor and write the program in ML* really requires a certain
level of reliability in all areas of the system.

The program to run Ponginator can be found in appendix B. The style
of programming is that of differential programming: Rather than pro-
gramming every pixel on every cycle of the game, only the differences
between the old game image and the new one are encoded. This sim-
plifies the game logic and improves the performance of the game. For
example, if the bat is moving up by one pixel, the pixel at the top end
of the bat is coloured to the bat colour, and the pixel at the end of the
bat is coloured to the background colour. This is illustrated by the
diagram on the right.

Programming of the screen is performed using the OUT combinator
with a VGA driver wired into the processor. 16-bit colour mode is supported, and the screen
is divided into a 20×20 grid to simplify the game. The IN 1 combinator is wired to switch 5
of the DE2 board to control the bat. When the player loses the game, the game stops and the
screen indicates that they have lost. The user may then retrieve their high score on the HEX
display. Figure 4.4 (overleaf) shows a screenshot of the game.

The game is actually surprisingly fun and quite difficult due to how fast it goes. The ball is
made to vary its course around the screen by changing its offset slightly when it hits the bat.

For me, Ponginator is the highlight of this project. It represents the collective collaboration of
all areas of my system to produce something tangible and fun.
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(a) Game Play Screen (b) The “Lose” Screen

Figure 4.4: Comb Pong
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Figure 4.5: Ponginator in combinator byte code
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Chapter 5

Conclusions

All goals outlined in the original proposal have been met and in several respects they have
been surpassed. The subset of ML supported throughout the system is larger than I ever ex-
pected it to be, and the addition of basic imperative features means that the system is flexible
and extendable. Since a lot more material was available than could fit in this dissertation,
I hope I have managed to convey an overall picture of how the system worked, as well as
covering in more detail some of the more difficult and intricate parts of the project.

One of the fundamental aims that I wanted to achieve with this project was that of scalability
and extensibility within the system. There are a number of ways in which I believe this has
been successful. The project has demonstrated that combinator processors can be designed
in such a way that both the on-chip and off-chip memory are utilised. To the best of my
knowledge, this is the first time that a combinator based architecture has been extended like
this. Substantial programs can be executed, allowing larger computations to be performed
than have been possible on similar processors.

The processor is competitive with a research project in the same area, despite having had
a much shorter development time and taking into account the fact that previous research
projects do not utilise off-chip memory.

The scope of extension in this area is large. Garbage collection in this project requires a
stop-the-world approach – it would be desirable for garbage collection to occur in parallel
with reduction. One of the criticisms of graph reduction is that it is fundamentally memory
bound. This does represent a problem, certainly in today’s age when memory latency is one
of the major bottlenecks in processor performance. Potential solutions may involve smart
caching schemes of expression trees or parallelised execution.

Graph reduction may not be the most intuitive form of processing, and it is unlikely to catch
up with conventional architectures in terms of speed or ubiquity. So, while combinatory
world domination is a far speck on the horizon, the new resurgence of interest has shown
some positive results, and I hope that I have demonstrated the principle of the mechanism
and how it can be used to do some real computation.
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Appendix A

Processor RTL View
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Figure A.1: Processor RTL View: Top level view of the processor register transfer level diagram
produced by Quartus
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Appendix B

Applications in ML*

B.1 The isPrime Predicate

(∗ Find d rem q us ing r e p e a t e d s u b t r a c t i o n ∗ )
fun r e m a i n d e r d q =

i f ( d < q ) then d
e lse ( r e m a i n d e r ( d−q ) q ) ;

(∗ E s t a b l i s h i f v i s a pr ime number or not ∗ )
fun i s P r i m e v =

l e t fun i s P r i m e H e l p e n =
(∗ I t e r a t e s up t o t h e v a l u e o f pr ime b e i n g t e s t e d ∗ )

i f ( e = n ) then t rue
e lse

i f ( ( r e m a i n d e r e n ) = 0) then f a l s e
e lse ( i s P r i m e H e l p e ( n + 1) )

in ( i s P r i m e H e l p v 2)
end ;

(∗ E x p r e s s i o n t o t e s t i f 1447 i s a pr ime ∗ )
i s P r i m e 1447 ;

B.2 Combinator Pong, Ponginator

(∗ D e f i n e c o l o u r s t o be used ∗ )
val b l a c k = 0 ;
val grey = 5 ;
val t u r q = 1 ;
val r e d = 4 ;
val y e l l o w = 7 ;

(∗ D e f i n e pong p a r a m e t e r s ∗ )
val batWidth = 3 ;
val b a t W i d t h T o t a l = 7 ;

(∗ Hex v a l u e o f 0xDEAD ∗ )
val DEAD = 57005 ;
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APPENDIX B. APPLICATIONS IN ML* B.2. COMBINATOR PONG, PONGINATOR

(∗ D i s p l a y t h e angry f a c e ∗ )
val d i e s c r e e n = OUT3 7 3 r e d (OUT3 12 3 r e d (OUT3 8 4 r e d (OUT3 11 4 r e d

(OUT3 7 6 r e d (OUT3 8 6 r e d (OUT3 11 6 r e d (OUT3 11 6 r e d (OUT3 12 6 r e d
(OUT3 7 7 r e d (OUT3 8 7 y e l l o w (OUT3 11 7 y e l l o w (OUT3 12 7 r e d

(OUT3 7 11 r e d (OUT3 8 11 r e d (OUT3 9 11 r e d (OUT3 10 11 r e d
(OUT3 11 11 r e d (OUT3 12 11 r e d (OUT3 6 12 r e d (OUT3 13 12 r e d

(OUT3 5 13 r e d (OUT3 14 13 r e d (OUT3 4 14 r e d (OUT3 15 14 r e d DEAD)
) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ;

(∗ Draw o v e r t h e b a t and b a l l , and c a l l d i e s c r e e n ∗ )
fun l o s e r bal lPx bal lPy batPy =

(OUT3 bal lPx bal lPy b l a c k (OUT3 1 ( batPy − 3) b l a c k
(OUT3 1 ( batPy − 2) b l a c k

(OUT3 1 ( batPy − 1) b l a c k
(OUT3 1 batPy b l a c k

(OUT3 1 ( batPy + 1) b l a c k
(OUT3 1 ( batPy + 2) b l a c k

(OUT3 1 ( batPy + 3) b l a c k d i e s c r e e n ) ) ) ) ) ) ) ) ;

(∗ Play t h e game ∗ )
fun drawGame ballPosX ballPosY bal lDirX bal lDirY batPosY =

(∗ Draw o v e r t h e o l d b a t and draw t h e b a t in i t s new pos ∗ )
l e t fun drawBat ballPosX1 ballPosY1 bal lDirX1 bal lDirY1 batYpos1 =

( l e t fun outputBatDown oldpos pos =
(OUT3 1 ( oldpos−batWidth ) b l a c k

(OUT3 1 ( oldpos + ( batWidth + 1 ) ) grey
( drawGame ballPosX1 ballPosY1 bal lDirX1 bal lDirY1 pos ) ) )

in
(∗ Move t h e b a t up ∗ )
( l e t fun outputBatUp oldposB posB =

(OUT3 1 ( oldposB+batWidth ) b l a c k
(OUT3 1 ( oldposB − ( batWidth + 1) ) grey

( drawGame ballPosX1 ballPosY1 bal lDirX1 bal lDirY1 posB ) ) )
in

(∗ R e t r i e v e i n p u t from t h e s w i t c h ∗ )
( i f ( ( IN 1) = 1) then

( i f ( ( batYpos1−batWidth ) = 0)
then ( drawGame ballPosX1 ballPosY1 bal lDirX1 bal lDirY1 batYpos1 )
e lse ( outputBatUp batYpos1 ( batYpos1 − 1 ) ) )

e lse
(∗ D e t e c t whe the r b a t i s a t t h e edge o f t h e s c r e e n ∗ )
( i f ( ( batYpos1+batWidth ) = 19)
then ( drawGame ballPosX1 ballPosY1 bal lDirX1 bal lDirY1 batYpos1 )
e lse ( outputBatDown batYpos1 ( batYpos1 + 1 ) ) ) )

end )
end )

in
(∗ Draw t h e b a l l i n t o i t s new p o s i t i o n ∗ )
( l e t fun drawBal lUpdate cBallPX cBallPY nBallPX nBallPY nBal lXdir newBallYdir =

(OUT3 cBallPX cBallPY b l a c k
(OUT3 nBallPX nBallPY t u r q

( drawBat nBallPX nBallPY nBal lXdir newBallYdir batPosY ) ) )
in

(∗ Check i f b a l l i n t e r c e p t s wi th t h e b a t ∗ )
( i f ( bal lPosX = 2) then

( i f ( bal lPosY < ( batPosY − batWidth ) ) then ( l o s e r ballPosX ballPosY batPosY )
e lse
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( i f ( bal lPosY > ( batPosY + batWidth ) ) then ( l o s e r ballPosX ballPosY batPosY )
e lse ( drawBal lUpdate ballPosX ballPosY 3 ballPosY true bal lDirY ) ) )

e lse
(∗ Check i f b a l l a t t h e edge o f t h e s c r e e n ∗ )
( i f ( bal lPosX = 19) then

(∗ c o n s i d e r o t h e r two c o r n e r c a s e s ∗ )
( i f ( bal lPosY = 19) then

( drawBal lUpdate 19 19 18 18 f a l s e t rue )
e lse

( i f ( bal lPosY = 0) then
( drawBal lUpdate 19 0 18 1 f a l s e f a l s e )

e lse
( i f ( ba l lDirY ) then

( drawBal lUpdate 19 ballPosY 18 ( bal lPosY − 1) f a l s e t rue )
e lse

( drawBal lUpdate 19 ballPosY 18 ( bal lPosY + 1) f a l s e f a l s e ) ) ) )
e lse

( i f ( bal lPosY = 0) then
( i f ( ba l lDirX ) then

( drawBal lUpdate ballPosX 0 ( bal lPosX +1) 1 t rue f a l s e )
e lse ( drawBal lUpdate ballPosX 0 ( ballPosX−1) 1 f a l s e f a l s e ) )

e lse
( i f ( bal lPosY = 19) then

( i f ( ba l lDirX ) then
( drawBal lUpdate ballPosX 19 ( bal lPosX +1) 18 true true )

e lse ( drawBal lUpdate ballPosX 19 ( ballPosX−1) 18 f a l s e t rue ) )
e lse

( i f ( ba l lDirX ) then
( i f ( ba l lDirY )
then

( drawBal lUpdate ballPosX ballPosY ( ballPosX +1) ( ballPosY−1) t rue true )
e lse

( drawBal lUpdate ballPosX ballPosY ( ballPosX +1) ( bal lPosY +1) t rue f a l s e ) )
e lse

( i f ( ba l lDirY ) then
( drawBal lUpdate

ballPosX ballPosY ( ballPosX−1) ( ballPosY−1) f a l s e t rue )
e lse ( drawBal lUpdate

ballPosX ballPosY ( ballPosX−1) ( bal lPosY +1) f a l s e f a l s e ) ) ) ) ) ) )
end )

end ;

(∗ S e t up t h e game s c r e e n ∗ )
fun drawBatStart k =

i f ( k = b a t W i d t h T o t a l ) then ( drawGame 5 5 true true 3)
e lse (OUT3 1 k grey ( drawBatStart ( k + 1 ) ) ) ;

(∗ PLAY PONG! ∗ )
drawBatStart 0 ;
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B.3 Library of Useful Functions

(∗ U s e f u l f u n c t i o n s ∗ )
fun andalso a b = i f a then b e lse f a l s e ;

fun o re l se a b = i f a then t rue e lse ( i f b then t rue e lse f a l s e ) ;

(∗ P a i r r e p r e s e n t a t i o n ∗ )
fun pai r a b = ( fn p => p a b ) ;

fun f s t p = p ( fn x => fn y => x ) ;

fun snd p = p ( fn x => fn y => y ) ;

(∗ L i s t r e p r e s e n t a t i o n ∗ )
fun cons h t = fn x => fn y => ( ( x h ) t ) ;

val n i l = fn x => fn y => y ;

fun head xs e = xs true e ;

fun t a i l xs e = xs f a l s e e ;

fun i s N i l xs = xs ( fn h => fn t => f a l s e ) t rue ;

(∗ ML P r i m i t i v e L i s t o p e r a t o r s ∗ )
fun length xs =

xs ( fn h => fn t => 1+( length t ) ) 0 ;

fun append xs ys =
xs ( fn h => fn t => cons h ( append t ys ) ) ys ;

fun concat d l i s t =
d l i s t

( fn h => fn t =>
i f ( i s N i l t )
then h
e lse ( append h ( concat t ) ) )

n i l ;

fun occurs p xs =
xs ( fn h => fn t => i f ( p h ) then t rue e lse ( occurs p t ) ) f a l s e ;

fun member n xs =
(∗ Check i f n i s a member o f t h e l i s t ∗ )
(∗ R e q u i r e s e q u a l i t y t y p e ∗ )
occurs ( fn m => m = n ) xs ;

fun f i l t e r b xs =
(∗ F i l t e r out a l l e l e m e n t s o f t h e l i s t s t h a t do not make b t r u e ∗ )
xs ( fn h => fn t => i f ( b h ) then ( cons h ( f i l t e r b t ) ) e lse ( f i l t e r b t ) ) n i l ;

fun map f xs =
xs ( fn h => fn t => cons ( f h ) (map f t ) ) n i l ;
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Appendix C

Instruction Opcodes
The Instruction Set Architecture of the processor was outlined in section 3.3. In this section,
the opcodes for arithmetic and combinator instructions are presented.

C.1 Arithmetic Instructions

The OP_arith codes for arithmetic instructions are described below:

Arithmetic Operation OP_arith

Addition 0x01
Multiplication 0x02
Equality 0x03
Subtraction 0x04
Less Than 0x05
Greater Than 0x06
Not Equals 0x07

Table C.1: Arithmetic instruction opcodes

C.2 Combinator Instructions

The OP_comb codes for combinator instructions are described below:

Combinator OP_comb

S combinator 0x01
K combinator 0x02
I combinator 0x04
Y combinator 0x08
B combinator 0x10
C combinator 0x20
OUT combinator 0x40
IN combinator 0x80

Table C.2: Combinator instruction opcodes
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Appendix D

Tables of Results

The below tables show the data used in the performance analysis part of the evaluation
chapter, section 4.1.

D.1 Fibonacci

Table D.1 shows the results from running Fibonacci for different values of n.

n 0 1 2 3 4 5 6 7 8 9
Unoptimised 47 91 353 694 1,319 2,285 3,876 6,433 83,468 623,110

Optimised 47 91 353 694 1,319 2,285 3,876 6,433 10,581 17,286

n 10 11 12 13 14 15
Unoptimised 1,486,504 2,554,240 5,160,175 8,719,030 14,795,392 24,410,608

Optimised 698,721 2,100,452 4,352,577 7,733,784 14,010,100 23,628,280

Table D.1: Fibonacci Results: Cycles taken to calculate fib n

D.2 Garbage Collection and isPrime

Table D.2 shows the result of running isPrime 1477 while varying the Garbage Collection
trigger point.

GC trigger (memory words ×103) 262 131 65 32 16 8 4 2 1
Cycles (×106) 650 674 679 676 668 638 577 509 400

Number of GCs 1 2 3 8 15 27 54 91 147

Table D.2: Cycle times and number of garbage collections when varying the GC trigger point
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Appendix E

Verilog Sample Code

The below code sample is part of the processor reduction engine and shows the Verilog
implementation of the C combinator (stages 0 and 1), as presented in section 3.4.3.

op_C :
case ( ALU_stage )

0 :
i f ( B == n i l ) begin

/ / I n s u f f i c i e n t arguments so t e r m i n a t e e x e c u t i o n
unwind <= 1 ;

end else i f ( cdr_rdaddr_b == B [ 2 7 : 0 ] && car_rdaddr_b == B [ 2 7 : 0 ] ) begin
/ / Unwind t h e t r e e a b i t
B_case <= 4 ;
B_val <= { { 4 { 1 ’ b0 } } , car_qb [ 2 7 : 0 ] } ;
P_case <= 3 ;
P_val <= B ;
F_case <= 0 ;

/ / C o l l e c t t h e t h i r d argument
arg3 <= cdr_qb ;

/ / Get a c e l l from t h e f r e e memory c h a i n
cdr_wren <= 1 ;
cdr_write_addr <= B [ 2 7 : 0 ] ;
cdr_wri te_data <= arg2 ;

car_wren <= 1 ;
car_write_addr <= B [ 2 7 : 0 ] ;
car_wri te_data <= { op_APP , 2 ’ b00 , F [ 2 7 : 0 ] } ;

car_rdaddr_b <= F [ 2 7 : 0 ] ;

/ / Go t o t h e nex t s t a g e
ALU_stage <= 1 ;

end else begin
/ / P r e p a r e t h e d a t a t h a t n e e d s t o be r e a d
cdr_rdaddr_b <= B [ 2 7 : 0 ] ;
car_rdaddr_b <= B [ 2 7 : 0 ] ;
B_case <= 0 ;
F_case <= 0 ;
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P_case <= 0 ;

cdr_wren <= 0 ;
car_wren <= 0 ;

end
1 : begin

/ / Per form a ’ t a i l ’ on t h e f r e e memory p o i n t e r
F_case <= 5 ;
F_val <= car_qb ;

/ / Wri te arguments t o t h e f r e e memory c e l l s c l a i m e d
car_wren <= 1 ;
car_write_addr <= F ;
car_wri te_data <= arg1 ;

cdr_wren <= 1 ;
cdr_write_addr <= F ;
cdr_wri te_data <= arg3 ;

P_case <= 0 ;
B_case <= 0 ;

car_rdaddr_b <= B ;
cdr_rdaddr_b <= B ;

stall_ALU <= 0 ;
end

endcase
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Appendix F

Initialisation Protocol

The initialisation protocol for smaller programs consisting of a single set of output files is
described first. In this case there are 3 output files from the compiler, car0.mif, cdr0.mif
and special.mif. The protocol to run a small program is described below. The protocol
starts from the board being preprogrammed with the processor and connected to a host PC
running Quartus.

A memory initialisation file can be loaded onto the board via the JTAG unit on the processor.
To do this, the in-system memory content editor in Quartus can be used. From here, the relevant
file can be imported and the save to memory button pressed to send the file out to the board.

1. Set switch SW17 high

2. Load car0.mif onto the board

3. Set swtich SW0 high. LEDG0 will light up to indicate that the car partition has been
initialised. Switch SW0 can then be lowered.

4. Load cdr0.mif onto the board

5. Set switch SW1 high. LEDG1 will light up and the switch can then be lowered.

6. Load special.mif onto the board

7. Set switch SW2 high. At this point all lights will turn off indicating that the processor is
ready to reduce the program.

8. Set all switches low. The processor will start reducing the program.

9. LEDR17 will light up to indicate that the processor has finished reduction. SW2 can be
used to retrieve the value held in the P pointer on the HEX display. If the program
reduced to an integer or a combinator, the value will be shown on the hex display, and
otherwise the pointer to the reduced tree will be shown. A similar protocol to that
described above can be used to retrieve the full tree from memory.
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The protocol described above can be extended to support arbitrary length programs in
the following way. For an arbitrary length program, the output files will be of the form:
car0.mif, car1.mif, ..., carn.mif, cdr0.mif, cdr1.mif, ..., cdrn.mif, special.mif. Between
steps 5 and 6 in the above protocol, the following steps must be followed to load the rest of
the tree into memory. The protocol describes how to load the nth set of car and cdr files onto
the board, and it must be repeated for each value of n output by the processor.

1. Set SW16 high

2. Load carn.mif onto the board.

3. Set SW4 high. Set the values of SW[15:6] to be equal to the value of n.

4. Lower SW16.

5. Set SW16 high

6. Load cdrn.mif onto the board.

7. Set SW5 high. Set the values of SW[15:6] to be equal to the value of n.

8. Lower SW16.
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Introduction

Many functional programming languages can be seen as an extension of the Lambda Calcu-
lus. In general they express computation without side effects or consideration of a mutable
state. Modern processors work on memory as a mutable state by loading and storing values
and working on a small subset to perform the necessary computation. This model raises
various challenges for high performance support of functional programming languages.

Lambda Calculus can be translated directly to Combinator form using translation rules. A
processor which uses Combinators as its instruction set rather than the traditional load /
store architecture lends itself particularly naturally to executing programs in functional lan-
guages. A previous CST project by Martin Lester showed basic feasibility of a soft core that
could do combinator reduction, but did not produce a complete system that could run sig-
nificant tests. A group at the University of York have been publishing reports of a machine
that they call the "Reduceron" – their work in its present state seems to have both interesting
ideas and some significant limitations. My proposed project is to design hardware that can
be implemented using an FPGA and that, by building on this previous work, can both run
more realistic tests than was previously possible and can explore the crucial issue of how to
exploit the small amount of fast on-chip memory that a VLSI processor can have.

ML (or a subset of ML treated using normal order reduction) serves as an example of a func-
tional programming language and the Altera DE2 Development boards provide a platform
on which to build the processor. The project will involve building a compiler to turn ML into
combinator (or super-combinator) form and then building a processor in System Verilog, ini-
tially in simulation and then on the board itself. Analysis and comparison of the processor
using different refinements with a variety of test programs will then be undertaken – to do
this a model of the CPU implemented in software and converted to MIPS will be used a
baseline and the performance of my customized processor can then be compared to it.

Starting Point

The following resources which I will build on existed at the start of the project:

• C code to model a Combinator Reduction Engine – A skeleton simulation of the
processor written in C by Dr. Norman to be used as a baseline to be compared against
the performance of my eventual design.

• Altera Internship – Over the summer of 2008, I worked with the Computer Archi-
tecture group of the Computer Lab which gave me familiarity with the hardware tools
and basic code which I wrote to communicate with the JTAG module, a useful resource
to read values out of the processor

• At the end of September, I started feasibility analysis of building some of the software
tools that I will need in ML
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Project Description

The overall aim of the project is to build a processor with Combinators as the instruction set
which can run ML programs.

The initial subset of ML that will be supported will simply use ML as a familiar syntax to
encode the lambda calculus. However, further work will aim to support a larger amount of
the language. Further language features will be supported if they can be encoded in such a
way that the architecture of the reduction engine will not need to be changed. For example,
language features like pattern matching and datatypes can feasibly be transformed to the
lambda calculus, so they may potentially be supported. However, language features like
references and exceptions which map better to an architecture which is load-store and has
linear code, will not be supported.

The compiler to convert a subset of ML to combinators will be written in ML. This will con-
sist of a lexer and a parser to convert the input to an abstract syntax tree. The syntax tree will
then be converted to combinators by an intermediate step to lambda calculus, followed by
a direct translation to combinators using specified translation rules. The precise translation
rules used will be a specifiable parameter in order to allow for efficiency comparison of the
processor with a variety of combinators. For example the most basic translation, while still
being Turing complete is:

λ∗x.x ≡ SKK
λ∗x.P ≡ KP where x /∈ FV(P)
λ∗x.PQ ≡ S(λ∗.P)(λ∗.Q)

The processor itself will be written in Verilog / System Verilog. The basic processing model
is to perform combinator reduction by tree traversal and manipulation - which amounts to
operations on memory using pointer manipulation. Rather than using a stack to keep track
of the reduction being performed, a pointer will be contained with each part of the graph
indicating the ’next place to look’, thus when going down the tree, the pointers can be used
to point back up the tree and then restored once a combinator is found.

In order to make the processor perform any useful operation, certain operations will have
to be provided as primitives. However, combinator reduction is implicitly lazy, while oper-
ations like arithmetic operations are strict. To solve this problem, integer primitives will be
represented with a continuation passing style, so for example, the equation p + q would be
represented as qc(pc+)

The work presented by York University on the Reduceron uses several parallel memories
in order to try and speed up execution. However, these memories are local and on-chip,
and this model of execution makes it hard to take advantage of any of the off chip memory
without coming into direct conflict with the bottleneck between the on-chip and off-chip
memory and thus seeing the parallelism disintegrate. The restriction of only using local
memory substantially limits the size of the programs that can be run on their processor. In
order to run larger programs, I plan to take advantage of the resources available on the board
- and use both the on-chip and off-chip memory.

Finally, the reduction engine will be analyzed and tested using various benchmark pro-
grams. The results will be compared against benchmarks run with the C simulation of the
engine run on a MIPS soft core.
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Success Criteria

The primary criteria for the project, which must be completed to consider the project suc-
cessful are as follows:

1. Sufficient tools to allow a subset of ML to be turned into combinators and loaded unto
the board

2. A combinator reduction engine must have been implemented on the FPGA board

3. An analysis of the performance of this engine in comparison with the performance of
the simulation on the traditional soft core must have been undertaken

Extensions for the project, which are not essential to consider the project complete, but
nonetheless would increase the success of the project are follows:

1. A careful comparison of the performance and design of my combinator reducing en-
gine as opposed to York’s Reduceron

2. A parameterized system to allow the set of combinators which a program is expressed
in to be specified, and tests performed comparing the performance of the engine as a
function of this parameter

Plan of Work

This outlines the milestones and deadlines that will be used during the year in order to
ensure that the project stays on schedule and can be successfully completed. The project
timetable starts on the 24th of October, the date when the proposals are submitted.

• October 24th – November 3rd : Complete basic compiler in ML to convert subset of ML
to combinators

• November 3rd – November 17th :

– Run the simulation of the processor on a MIPS soft core.

– Analyze performance of the simulation processor to use as a baseline against
hardware implementation

• November 17th – December 3rd :

– Implement a stand-alone S/K reduction engine in Verilog but only in simulation

– Increase the number of combinators supported by the reduction engine

• December 3rd – January 13th :

– Ensure that all parts up to December 3rd have been successfully completed

– Plan dissertation
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• January 13th – January 22nd : Get the reduction engine working on the board and add
bus to communicate with the off-chip RAM

• January 22nd – February 1st : Complete progress report and prepare presentation

• February 1st – February 7th :

– Add support for built-in primitives

– Continue work on dissertation

• February 7th – February 16th :

– Debug and catch up time: Catch up on any areas not met between January and
February.

– Continue work on dissertation

• February 16th – March 2nd : Prepare and benchmark larger tests and do full perfor-
mance analysis

• March 2nd – March 11th, plus part of Easter Vacation : Complete bulk of dissertation

• April 21st – May 12th :

– Compare processor with other work

– Finish loose ends

– Complete dissertation

• May 15th : Submit dissertation
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