
Unsupervised automatic dataset repair

James U. Allingham
St Edmund’s College

A dissertation submitted to the University of Cambridge
in partial fulfilment of the requirements for the degree of

Master of Philosophy in Advanced Computer Science

University of Cambridge
Department of Computer Science and Technology

William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

Email: jua23@cam.ac.uk

June 12, 2018

Declaration

I James U. Allingham of St Edmund’s College, being a candidate for the

M.Phil in Advanced Computer Science, hereby declare that this report and

the work described in it are my own work, unaided except as may be specified

below, and that the report does not contain material that has already been

used to any substantial extent for a comparable purpose.

Total word count: 12842

Signed:

Date:

This dissertation is copyright c©2018 James U. Allingham.

All trademarks used in this dissertation are hereby acknowledged.

Acknowledgements

Firstly, I would like to extend my gratitude to my supervisor Prof. Zoubin
Ghahramani for taking me on despite his incredibly busy schedule, and for
the useful advice throughout the course of this project.

Secondly, I would like to thank Dr. Christian Steinruecken who co-supervised
me, for his patience and dedication to helping me learn, as well as his metic-
ulous feedback and support throughout the dissertation.

Thirdly, I would like to thank my course advisor Prof. Alan Blackwell for all
the advice he has given me throughout the last 9 months, and for all of the
stimulating conversations.

Finally, I would like to thank my girlfriend Sasha, for making the whole
process easier by working alongside me.

Unsupervised automatic dataset repair
Abstract

This dissertation describes algorithms for repairing datasets that contain
missing or corrupt data. Datasets with missing values are a common occur-
rence, due to faulty sensor readings, unanswered survey questions, or data
loss, for example. Unfortunately, many common algorithms fail on such
datasets. One option is not to use algorithms that fail on corrupt datasets,
and use more robust algorithms instead. A second option is to repair the
dataset first, and then use the original algorithm; this is the approach taken
in this dissertation. Using robust algorithms that handle missing data na-
tively and sensibly should always be preferred: the algorithm has the oppor-
tunity to make choices that take into account both the defects in the data
and the objective of the computation. However, such algorithms are not al-
ways available, and might not be able to handle all types of dataset defects
equally well.

This dissertation presents AutoImpute, an application for repairing missing
data using probabilistic machine learning models. The tool includes imple-
mentations of various imputation models, some of which have been imple-
mented with automatic Bayesian model comparison. In developing this tool,
various approaches were taken to investigate the challenges encountered when
imputing missing data.

Imputation is difficult for several reasons: the data types of variables must
be maintained, different types of missing data might need to be treated dif-
ferently, and it is difficult to evaluate models for missing data. Probabilistic
machine learning offers solutions to some of these problems. Bayesian infer-
ence allows us to encode prior knowledge about the data into our models,
and helps to prevent over-fitting. Bayesian model comparison can be used to
choose among several probabilistic models automatically, based on the data.
Probabilistic machine learning methods often allow sampling multiple impu-
tations, rather than just one; these samples can be used to get error bounds
or uncertainty estimates in later data processing steps. This dissertation
hopes to provide a foundation for future work in solving problems involved
in imputation of missing data.

Contents

List of Figures ii

List of Tables iii

Abbreviations iv

1 Introduction 1

2 Background 4
2.1 Probability Theory . 4

2.1.1 Probability density and mass functions 5
2.2 Machine Learning and Inference 6

2.2.1 Learning as inference 7
2.2.2 Graphical models . 9
2.2.3 Mixture models . 10
2.2.4 MAP estimation . 12
2.2.5 Expectation maximisation 12
2.2.6 Variational Bayes . 13

2.3 Missing Data . 15
2.3.1 Missing data taxonomy 15
2.3.2 Handling missing data 16

3 Related Work 20
3.1 Methods for learning despite missing data 20
3.2 Imputation methods . 22

4 Design and Implementation 24
4.1 Overview of AutoImpute . 24

4.1.1 Features . 24
4.1.2 User interface . 25
4.1.3 Software engineering details 27

4.2 Mean Imputation . 29
4.3 Single Gaussian . 29

4.3.1 EM for MLE . 30
4.3.2 EM for MAP estimation 31
4.3.3 Bayesian inference . 32

4.4 Gaussian Mixture Model . 33
4.5 Dirichlet Process . 35
4.6 Bayesian Model Comparison 36

5 Evaluation 39
5.1 Simple Examples . 39
5.2 Model Comparison . 43
5.3 Effect of Missing Data Percentage 45
5.4 Sampling Illustration . 46
5.5 Comparison with MissForest 48

6 Summary and Conclusions 51
6.1 Future Work . 52

A Notation 54

B Important Probability Distributions 56
B.1 Gaussian . 56
B.2 Categorical . 58
B.3 Wishart . 58
B.4 Inverse Wishart . 58
B.5 Dirichlet . 59

C Testing 61
C.1 Mean imputation . 61
C.2 Dirichlet process . 62
C.3 Single Gaussian . 62
C.4 Guassian Mixture Model . 64

i

List of Figures

1.1 An example of why it is difficult to analyse datasets with miss-
ing data. 2

2.1 Graphical representation of a simple model. 10
2.2 Graphical representation of a more complex model. 10
2.3 Modelling a bimodal distribution. 11
2.4 Graphical representation of a mixture model. 11
2.5 A pictorial description of multiple imputation. 18

4.1 Graphical representation of the Gaussian mixture model. . . . 34

5.1 Pathological examples. 40
5.2 DP prior sampling. 41
5.3 Single Gaussian prior sampling. 41
5.4 Simple DP example. 42
5.5 Simple single Gaussian example. 42
5.6 Affect of missing data percentage on different performance

metrics. 47
5.7 Illustration of a use case for sampling multiple imputations. . 48
5.8 Comparison between MissForest and AutoImpute for various

datasets and missing data types. 50

B.1 An illustration of Gaussian distributions. 57
B.2 The effect of α on the symmetric Dirichlet distribution. 60

ii

List of Tables

4.3 Summary of unit-tests for AutoImpute. 28
4.4 Software specifications for the testing environment. 28

5.1 5 random rows from the Boston Housing dataset. 43
5.2 Toy model comparison example datasets. 44
5.3 Comparison of marginal likelihoods for two single Gaussians. . 45
5.4 Comparison of marginal likelihoods for a single Gaussian and

a DP. 46

iii

Abbreviations

DP Dirichlet process
EM Expectation maximisation
GMM Gaussian mixture model
i.i.d. independent and identically distributed
KL Kullback–Leibler
MAP Maximum a posteriori
MAR Missing at random
MCAR Missing completely at random
MICE Multiple imputation by chained equations
MLE Maximum likelihood estimation
NMAR Not missing at random
RF Random forest
VB Variational Bayes

iv

Chapter 1

Introduction

Datasets are often messy – it is common for values to be missing or corrupt.

Examples include empty cells in spreadsheets, unanswered survey questions,

or readings from faulty sensors. Unfortunately, despite the frequent occur-

rence of such defects, software engineers tend not to develop algorithms that

are robust to missing values. As a result, many common algorithms fail on

such datasets. Even simple algorithms, such as calculating the mean of a set

of values, fail when applied to missing values.

What should one do in a situation where a machine learning, visualization,

or other algorithm cannot handle missing elements in a dataset? One option

could be to remove all of the entries that contain missing values. However,

in datasets with many variables, this can mean throwing away a large por-

tion of the data, which is undesirable for at least three reasons: firstly, some

of the information being thrown away could be useful or important for the

algorithm. For example, most machine learning algorithms tend to perform

better when trained with more data. Secondly, collecting and curating data

can be expensive, so having to throw much of it away is rather dissatisfying.

Thirdly, depending on the mechanism that caused the data to be missing,

throwing away data can bias further analyses. An alternative approach is to

try and repair the dataset by filling in the missing values with guesses for

what the original value was. This approach is called data imputation. Unfor-

1

−0.5 0 0.5 1

−1

0

1

2

Figure 1.1: An example of why it is difficult to analyse datasets with missing
data. The blue circles are non-missing data. Only the y-values for the red
circles are missing – the y-value has been deleted for points where the x-value
is above 0.5. In the real world this could be due to a sensor which cannot
measure voltages when there is a current above 0.5 A. The black square shows
the arithmetic mean for the observed data. The black circle shows the true
arithmetic mean calculated using full dataset.

tunately, while this process does not throw away as much useful information,

it can still introduce bias into further analyses.

For example, consider an algorithm that computes the arithmetic mean of

a set of 2D points. If the dataset does not contain any missing elements,

then this is as simple as calculating the arithmetic mean of the x- and y-

values separately. However, if the dataset does contain missing elements

then this simple approach may not work. For example, suppose that points

with x > 0.5 have their y-values deleted. In this case, the calculated mean

of the y-values could be significantly lower than true mean. This situation

is depicted in Figure 1.1. Note that the y-value of the true mean is higher

than most of the observed y-values.

There are many factors to consider when imputing missing data. One such

consideration is the type of the data that is missing. The method for imput-

ing a categorical value will likely be different to that of a continuous value.

Another consideration is the mechanism that caused the data to be missing

2

in the first place. Imputing data that is missing at random is different from

imputing data that was systematically removed or censored.

This dissertation aims to investigate issues such as those discussed above.

The main contributions of this dissertation are:

• AutoImpute – a command line application for repairing missing data

using a variety of algorithms and probabilistic models,

• a discussion of key challenges with missing data that were encountered

during the development of AutoImpute, and

• proposed solutions to these challenges.

3

Chapter 2

Background

2.1 Probability Theory

Probability theory forms the basis for machine learning as it provides us with

the mathematical machinery for understanding and representing uncertainty.

Consider two random variables X and Y , from which can take values x from

a set X and y from a set Y , respectively. The probability that the random

variable X takes on the value x is p(X = x), and p(X), is the probability

distribution of X. We call p(X, Y) the joint distribution of X and Y , and

p(X |Y) the conditional distribution of X given Y .

The two fundamental rules of probability according to Bishop (2006, ch 1)

are the sum rule and the product rule:

p(X=x) =
∑
y∈Y

p(X=x, Y =y) (2.1)

p(X=x, Y =y) = p(X=x |Y =y) p(Y =y) . (2.2)

For the continuous case, the summation in the sum rule is replaced with

an integral over y. In the context of the sum rule, the distribution p(X) is

known as the marginal distribution of X.

4

Using the product rule, and the symmetry p(X, Y) = p(Y, X), one can

derive the rule of inverse probability, also known as Bayes’ rule:

p(Y = y |X = x) =
p(X = x |Y = y) p(Y = y)

p(X = x)

=
p(X = x |Y = y) p(Y = y)∑

y∈Y p(X=x, Y =y)
. (2.3)

If the joint distribution p(X, Y) factorises into the product p(X)×p(Y) then

the random variables X and Y are independent. In this case, the conditional

distribution p(X |Y) is equal to the marginal distribution p(X).

2.1.1 Probability density and mass functions

We often use functions to describe the distributions of random variables.

Continuous random variables are often described by a probability density

function (PDF). The PDF describes the relative probabilities of the values

that a random variable can take. A function f is the PDF of a random

variable X if the probability that the value x of the random variable will fall

in the range (a, b) is:

p(a ≤ X ≤ b) =

∫ b

a

f(x) dx. (2.4)

If f is the PDF of X then we say that X is distributed according to f . A

shorthand for writing this statement is: X ∼ f (θθθ), where θθθ are parameters

controlling the density of X.

A probability mass function (PMF) is the equivalent of a PDF for discrete

random variables. A function f is the PMF of a random variable X if

P(X = c) = f(c).

In this dissertation, a number of probability distributions are used frequently.

The Gaussian (or normal) distribution is used to model continuous random

variables. The categorical distribution is used for discrete random variables.

5

The Wishart is a distribution over prevision matrices. The Dirichlet dis-

tribution is a distribution over finite discrete probability distributions. Ap-

pendix B provides the probability mass / density functions, and description

of these distributions.

2.2 Machine Learning and Inference

Consider a dataset of N entries each of which describes a house with D

features, represented as an N×D matrix X. Additionally, let us assume that

we have the price of each of these houses – we can represent this information

as an N -dimensional vector y. We might want to build a model that predicts

the price of a house based on the D features in our dataset.

The problem above is a typical example of a supervised learning problem. In

a supervised learning setting we wish to learn a function from inputs x to

outputs ŷ, parametrised by θθθ, such that:

1. the difference between ŷ and y is minimised, and

2. ŷ is generalisable to new examples outside of X.

In this case, learning is inferring both the parameters θθθ and the family of

functions for ŷ that best achieve these two goals. The families of functions

to search for ŷ, the metric by which we measure the closeness of ŷ and y, and

the method for updating the parameters θθθ, are choices that must be made

by us.

Alternatively, rather than predicting the price of a house, we might wish

to model the distribution of house features. We might wish to know, for

example, the distribution of bed rooms and how that relates to the distri-

bution of bathrooms. Density estimation is a typical unsupervised learning

problem. Other unsupervised learning problems include anomaly detection

and clustering. The difference between unsupervised and supervised learning

problems is that in the supervised setting we are given labels. However, both

problems can be viewed as function estimation.

6

2.2.1 Learning as inference

There are a number of methods for finding the parameters of a model. One

simple (but often problematic) approach to finding the best parameters is to

maximise the likelihood of the dataset X given the parameters θθθ:

θ̂θθ = argmax
θθθ

p(X |θθθ) (2.5)

where p(X |θθθ) is called the likelihood. We wish to find the parameters of the

model that maximise the probability of observing the data. In practice, to

avoid numerical underflow, the log-likelihood is computed instead.

log p(X |θθθ) =
N∑
n=1

log p(xn |θθθ) . (2.6)

Maximising the log-likelihood results in the same set of parameters as max-

imising the standard likelihood because the logarithm is a convex function

and therefore

argmax
θθθ

log p(X |θθθ) = argmax
θθθ

p(X |θθθ) . (2.7)

While the maximum likelihood estimation (MLE) approach can give good

results, it is not perfect. MLE tends to over-fit to the training data. To

illustrate this issue, let us consider another example. Suppose we wanted to

infer the probability of flipping a coin and it landing on tails. We could flip

a coin 10 times and observe the results. However, if we were to observe 10

heads, and we used MLE to infer the probability of flipping a tails, we would

arrive at 0%. This result does not seem correct – based on our intuitions

about how a coin flip works it is surprising that it is impossible to get a tails.

Things get more dubious when we consider that we would arrive at the same

conclusion if we only flipped a single coin and observed a heads.

One solution to the problem of over-fitting with MLE is to use Bayesian

inference. To describe Bayesian inference, let us take another look at Bayes’

7

rule applied to the dataset X and the parameters θθθ:

p(θθθ |X) =
p(X |θθθ)p(θθθ)

p(X)
=

p(X |θθθ)p(θθθ)∫
θθθ
p(X |θθθ) p(θθθ) dθθθ

(2.8)

where p(X |θθθ) is the likelihood, p(θθθ) is called the prior, and p(X) is called

the evidence or marginal likelihood. The prior describes our beliefs about

what the parameters of the model should be. For example we could use it to

encode our belief that a coin should have a non-zero probability of landing

on either side. The evidence describes how probable the observed data is

according to our model. Here the model refers not to a specific instance of

the model with a particular set of parameters, but rather the class of models

for which we are trying to determine the parameters. The posterior p(θθθ |X)

it is the probability of the parameters given the data, i.e. what we should

believe the parameters of the model to be after observing the data. The key

idea of Bayesian inference is that we can use Bayes’ rule to update our belief

about the parameters of our model having seen the data.

Given the posterior distribution of the parameters, we can determine the

posterior predictive distribution of a test point x∗:

p(x∗ |X) =

∫
θθθ

p(x∗ |θθθ) p(θθθ |X) dθθθ. (2.9)

The prior serves two main purposes in Bayesian inference. Firstly, it is a

way for expert knowledge to be incorporated into the inference. Secondly,

it serves as a form of regularisation that prevents over-fitting – solving the

main issue with MLE.

Unfortunately, the integrals in the calculation of the evidence in equations (2.8)

and (2.9) are often intractable to compute. There are a number of approaches

that address this problem. For example, the use of conjugate priors – which

result in a posterior that is from the same family as the prior – can sometimes

result in easily computable closed forms for the integral.

Another way of dealing with intractable integrals is to use approximation

8

techniques. Broadly speaking, there are three main approaches to approxi-

mating intractable integrals (Steinruecken and Iwata, 2013).

1. Sample from the distributions by replacing the integrals with summa-

tions, for example Monte-Carlo methods.

2. Replace the difficult integrals with integrals that are easier to compute

and (hopefully) give similar results, for example Variational Bayes (Sec-

tion 2.2.6).

3. Use non-Bayesian methods, for example MAP estimation (Section 2.2.4).

Each of these methods has pros and cons.

2.2.2 Graphical models

Some probabilistic models can be represented in a graphical form. One of

the benefits of a graphical representation is that the conditional dependency

structure of models can be expressed in a simple visual form. For example,

consider the following joint distribution over a few variables:

p(A, B, C, D, E) = p(A |B, C) p(B |C) p(C |D, E) p(D |E) . (2.10)

This joint distribution can be represented as a graph, where the nodes are

random variables and the edges indicate dependence between those random

variables, as shown in Figure 2.1. This figure depicts a particular type of

probabilistic graphical model – a Bayesian network. Bayesian networks are

a subset of graphical models and are represented by directed acyclic graphs

(DAGs).

For a slightly more complicated example consider the following distribution:

p({An}, B | c, d) = p(B | c)
N∏
n=1

p(An |B, d) (2.11)

and its corresponding graphical model shown in Figure 2.2. This figure in-

9

A C D

B E

Figure 2.1: Graphical representation of a simple model described in equa-
tion (2.10).

troduces a few more devices for describing probabilistic models. There are

three kinds of nodes:

1. observed variables, which are depicted using shaded circles,

2. unobserved variables, which are depicted with unfilled circles, and

3. hyper-parameters, which are depicted without circles.

The unobserved variables can be further divided into latent variables and

parameters. Some parts of the graph are surrounded by “plates”, which

indicate that the surrounded subgraph is repeated a certain number of times.

An dBc

n = 1...N

Figure 2.2: Graphical representation of a more complex model described in
equation (2.11).

2.2.3 Mixture models

Mixture models are a type of probabilistic model which leverage discrete

latent variables to combine simple probability distributions into complex

marginal distributions. For example, the Gaussian mixture model (GMM)

is a combination of Gaussian distributions. To motivate why we might want

to have this more expressive distribution consider the example shown in Fig-

10

ure 2.3. A single Gaussian is unable to capture multi-modal features in data,

however, GMMs are able to do so.

Single Gaussian GMM Bi-modal distribution

Figure 2.3: Modelling a bimodal distribution. The black dash-dotted curve is
a bimodal distribution which we wish to model. The red dotted curve is the
fit resulting from a single Gaussian. The solid blue curve is the superposition
of two Gaussian components (dashed blue lines) of a GMM.

The general form of a mixture with K components is:

p(x | {θθθk}) =
K∑
k=1

πk pk (x |θθθk) (2.12)

where πk are the weights between 0 and 1 that sum to unity, pk (·) is the

probability distribution for the kth component with parameters θθθk, and {θθθk}
is the set containing θθθk for all k. The mixture weights πk can be interpreted

as the probability that x is drawn from component k. In a GMM, the pk

are Gaussian distributions, and the parameters θθθk are the means µµµk and the

covariance matrices ΣΣΣk. Mixture models can be conveniently represented

using Bayesian networks, as show in Figure 2.4.

θθθk x πππ

k = 1...K

Figure 2.4: Graphical representation of a mixture model as described in
equation (2.12).

11

2.2.4 MAP estimation

Maximum a posteriori (MAP) estimation can be seen as a compromise be-

tween maximum likelihood estimation and Bayesian inference. MAP esti-

mation incorporates a prior into the maximum likelihood estimate, however,

MAP estimation is not a Bayesian method because it results in a point es-

timate of the parameters (as opposed to a distribution over parameters as

Bayesians would prefer). Note that in Bayes’ rule (2.8) the evidence is ef-

fectively just a normalising constant. Bayesian inference tells us that the

distribution for the parameters after seeing the data is proportional to the

product of the likelihood, and our prior belief about the distribution of the

parameters:

p(θθθ |X) ∝ p(X |θθθ) p(θθθ) . (2.13)

The most probable value of the parameters θθθ according to the posterior

distribution can be calculated: θθθMAP = argmaxθθθ p(X |θθθ) p(θθθ).

Because this calculation does not depend on the evidence, that source of

intractable integrals is avoided and because the MAP estimate is a point

estimate, the integral in equation (2.9) is not required.

2.2.5 Expectation maximisation

Fitting mixture models, or any class of models with latent variables, is not

as straight forward as for models that only have parameters and observed

variables. Expectation maximisation (EM) is an iterative method for finding

MLE and MAP estimates. The EM algorithm starts with guesses for the

parameters and then refines those guesses by alternating between two steps:

1. The E-step – which uses the current version of the parameters, θθθold, to

find the posterior distribution for the latent variables, and then uses

this posterior to find the expectation of the log-likelihood, with respect

to the latent variables, given some parameters θθθ: Q(θθθ, θθθold).

2. The M-step – which maximises Q(θθθ, θθθold) to find the new parameters:

12

θθθnew = argmaxθθθQ(θθθ, θθθold).

These steps are repeated until convergence. Each iteration of the EM algo-

rithm is guaranteed not to decrease the likelihood of the unobserved data (Bishop,

2006, ch 9). In the case of a MAP estimate, the E-step remains the same

and the M-step maximises Q(θθθ, θθθold) + log p(θθθ), where p(θθθ) is the prior on

the parameters.

A remark

In the discussion above, we have considered the use of the EM algo-

rithm specifically for dealing with unobserved latent variables in the

model. However, the EM algorithm is applicable to a much broader set

of problems. Of particular interest to us is the use of the EM algorithm

for dealing with missing values in a dataset.

2.2.6 Variational Bayes

As mentioned in Section 2.2.1, Variational Bayes (VB) is a method for ap-

proximating intractable integrals in Bayesian inference. Broadly speaking,

variational methods make use of principles from the calculus of variations to

perform optimisation over functions. By restricting the classes of functions

being optimised, to those classes that are tractable to compute, approximate

solutions to intractable integrals can be found.

Like the EM algorithm, VB is an iterative method which successively con-

verges on the optimum parameters. However, unlike EM, VB does not pro-

duce point estimates for parameters but rather estimates for the posterior

distributions of the parameters.

To better explain VB let use consider a probabilistic model p(Z, X) with

observed variables X, latent variables Z, and a posterior distribution for

the latent variables p(Z |X). Let us assume, as is often the case, that the

posterior is intractable. To approximate this posterior using VB we define a

13

family of distributions we wish to optimise over: q(Z).

We can measure the difference between the posterior p(Z |X) and the vari-

ational distribution q(Z) using the Kullback–Leibler (KL) divergence:

DKL(q || p) =

∫
X

q(Z) log
q(Z)

p(Z |X)
dX. (2.14)

DKL(q || p) can be used as an optimisation objective for methods such as

gradient descent or block coordinate descent, because minimising DKL(q || p)
reduces the difference between the variational and true posterior distributions

(the approximation error).

However, there is a problem with minimising DKL(q || p) as defined in equa-

tion (2.14) – the reason that we are approximating p(Z |X) is that it is

intractable to compute. How can we minimise a quantity that we cannot

compute? We can rewrite the RHS of equation (2.14) as follows:

DKL(q || p) = EZ

[
log q(Z)− log p(X, Z)

]
+ log p(X) . (2.15)

Noting that the KL divergence is non-negative (DKL ≥ 0):

log p(X) ≥ EZ

[
log q(Z)− log p(X, Z)

]
(2.16)

where the expectation is known as the evidence lower bound (ELBO). Max-

imising the ELBO is equivalent to minimising the KL divergence, and as the

ELBO does not contain any intractable integrals we are able to perform this

optimisation.

Variational Bayes’ requires choosing a variational distribution q(Z). We want

to choose a family of distributions that expressive enough that it can be close

to p(Z |X), and that is also computationally tractable. A common approach

is to choose a factorised distribution. With this approach we assume that the

14

distribution of each of the latent variables is independent of the others:

q(Z) =
N∏
n=1

qn(zn) (2.17)

where N is the number of latent variables. Under the factorisation assump-

tion, the optimal updates are analytically computable and can be updated

with block coordinate descent. The optimal updates are:

log q∗(zn) = Em 6=n
[

log p(X, Z)
]

+ c (2.18)

where c is a constant that can be recovered by inspection.

Note that both Variational Bayes and the EM-algorithm can be used in cases

where there are missing values in the dataset.

2.3 Missing Data

Consider a dataset with N entries of D-dimensional data, represented as an

N × D matrix X. Any of the elements xnd could be missing. In order to

describe which elements are missing we use a mask matrix M, with the same

dimensions as X. If a value xij is missing then mij = 1, otherwise mij = 0.

For any row xn the set of indices for missing values is denoted as m, and set

of indices for values that are non-missing is denoted as o. Using this notation,

xno and xnm are vectors containing the non-missing and missing elements,

respectively. X:o and X:m denote all of the non-missing and missing values

in the dataset, respectively.

2.3.1 Missing data taxonomy

The nature of the missingness is an important consideration when handling

missing data. Little and Rubin (2002, ch 1) classify missing data based on

15

the conditional distribution p(M |X). They define three types of missing

data:

1. Missing completely at random (MCAR): p(M |X) = p(M), the pattern

of missing does not depend at all on the data.

2. Missing at random (MAR): p(M |X) = p(M |X:o), the pattern of

missingness may depend on the observed values but not the missing

values. Figure 1.1 shows an example of this case.

3. Not missing at random (NMAR): the pattern of missingness may de-

pend on any values including those that are missing. This is the case

e.g. when values have been censored, or when a sensor doesn’t report

values in a certain range.

Note that NMAR is a stronger condition than MAR, and MAR is a stronger

condition than MCAR.

The MCAR and MAR assumptions are almost always unrealistic. However,

using a method that assumes MAR can still give reasonable results. Fur-

thermore, when handling missing data, it is often convenient to make the

MAR assumption since there are no general approaches for handling NMAR

data (Ghahramani and Jordan, 1996).

2.3.2 Handling missing data

There are a number of approaches for dealing with missing data. Possibly

the most simple approach, called listwise deletion, is to discard any entries

with missing values. However, as discussed in Chapter 1, this is not usually

a good idea because useful data is thrown away. For example, training deep

neural network models is a data-intensive task that requires as much training

data as possible (Jordan and Mitchell, 2015).

A second approach is to use an algorithm that can automatically handle miss-

ing values. Many algorithms are either indifferent to the presence of missing

values or are specifically designed to account for the missingness in some

16

way. This approach has the advantage that users of the algorithm need not

concern themselves with the details of how to repair the dataset. Algorithms

that handle missing values directly can make use of the information about

which values are missing. This information is not available to algorithms

that operate on datasets that have been repaired by imputation or deletion.

However, not all algorithms have this capability.

A third approach is to use an imputation algorithm to repair the dataset

before proceeding with the task at hand. This approach has the advantage

that any algorithm can then be used on the repaired dataset, even one that

fails on incomplete datasets.

Simple imputation methods

To give a better intuition of how imputation might be performed, let us

consider a few simple methods for imputing missing values, i.e. methods for

predicting X:m given X:o:

• Hot-decking : replacing all missing values in an entry with the corre-

sponding value in a similar entry. It is also possible to use a random

entry rather than a similar one.

• Mean or mode substitution: replacing all missing values with the mean

(or mode for categorical variables) of the corresponding variable. The

assumption that all of the missing values are equal to the mean of

variable is probably unrealistic. Note that mean imputation will not

change the mean of which could be a useful property in some cases.

• Regression imputation: train a machine learning model to predict miss-

ing values in an entry given the values that are not missing. This ap-

proach addresses the a problem with the above two methods: ignoring

correlation between variables. However, this method can incorrectly

increase the correlation between two variables. This issue can be some-

what corrected for by adding noise to the imputed value, based on the

variance of the regression.

17

π 0 1 ?

e 0 ? ?

π 0 ? ?

? ? ? ?

π 0 1

e 0

π 0

? ?

π 0 1 ?

e 0 ? ?

π 0 ? ?

? ? ? ?

π 0 1 ?

e 0 ? ?

π 0 ? ?

? ? ? ?

π 0 1 ?

e 0 1 ?

π 0 2 ?

e 0 1 6

π 0 1 0

e 0 -1 1

π 0 0 2

π 0 1 0

1

2

1

3

1

2

1

3

1

2

1

3

1

1

1

0

1

0

0

1

1

1

0

0

Figure 2.5: A pictorial description of the multiple imputation pipeline. An
incomplete dataset is first imputed multiple times. Each of the imputed
datasets might have different values in the places where data is missing.
Analysis is then performed on each of the imputed datasets individually.
The results of the analyses are then pooled to give a final result for which
we can now have an estimate of the variance.

Multiple imputation

A problem with the methods described above, and in fact any imputation

method, is that any analyses performed on the imputed dataset can be over-

confident. This overconfidence is the result of treating imputed values the

same as values which are not missing. But there should be be a difference:

we should be less confident about the imputed values than the known values.

Unfortunately, after a dataset has been repaired, subsequent analyses are

unable to take this distinction into account.

Rubin (1987, 1996) proposed multiple imputation to address this problem.

The idea is to stochastically impute a dataset multiple times, using different

random numbers during each imputation, and then perform an analysis on

each of the imputed datasets, aggregating the results. This way the uncer-

tainty in each individual imputation is included in the final analysis. An

example of this process is shown in Figure 2.5.

Multiple imputation is flexible in that many imputation methods can be

used to repair each dataset, and the results can be aggregated in a number

of ways. For example, if the analysis being performed in Figure 2.5 is classi-

fication, then the results could be aggregated by taking the mode. However,

18

if the analysis being performed is regression then the mean could be taken

instead. The main constraint on the imputation method is that it must be

non-deterministic so that multiple samples can be drawn from it.

19

Chapter 3

Related Work

The problem of handling missing data began to see a lot of attention in

the 1970s (Little and Rubin, 2002). The EM algorithm was published by

Dempster et al. (1977) based on the theory of Baum et al. (1970), Sundberg

(1974), and Orchard and Woodbury (1976). Since then the problem of how

to handle missing data has continued to garner attention. A more recent

example of an approach to handling missing data is collaborative filtering for

recommender systems (Ricci et al., 2011).

3.1 Methods for learning despite missing data

Ghahramani and Jordan (1996) use the EM algorithm to estimate the density

(or mass) of missing data given the non-missing data. They give E and M-

steps for Gaussian and Binomial mixture models for learning the density and

mass of real-valued and binary discrete valued variables. In their method,

the EM algorithm is used to both learn the mixture components as well as to

handle missing data. Their method is able to perform both classification and

regression tasks in the supervised setting as well as other tasks in the un-

supervised setting. However, because their approach uses the EM algorithm

to give maximum-likelihood estimates of the parameters of the model, it is

20

prone to over-fitting. Another problem with this method is that it cannot

correctly handle data that is NMAR, because it does not specifically model

the pattern of missingness.

Melchior and Goulding (2016) propose using the EM algorithm for estimat-

ing the density of missing data. Their method is specifically aimed at han-

dling “truncated” datasets, in which whole entries are missing, as opposed

to datasets where some elements of any given entries can be missing. Delal-

leau et al. (2018) propose modifications to the approach of Ghahramani and

Jordan (1996) to improve the scalability to large data-sets.

Smola et al. (2005) extend Gaussian Processes and Support Vector Machines

for making predictions on datasets with missing values. Their work is aimed

at solving a supervised learning problem in the presence of missing data.

They propose two methods, one for the case in which part of the input

dataset X is missing, and one for the case in which some of the labels y are

missing.

The above methods all assume that the dataset is either MCAR or MAR,

because they do not model the mechanism for missingness. One domain

where the MAR and MCAR assumptions are invalid is collaborative filtering

for recommender systems: in this setting, the entries in the dataset often

contain user ratings for products. However, not every user gives a rating for

every product. These unrated entries can be interpreted as missing values.

However, it is incorrect to assume that the data is missing at random, because

the absence of a user’s rating for particular product gives information about

that user’s likes and dislikes, as shown by (Marlin et al., 2012). To deal with

NMAR data, Hernández-Lobato et al. (2014) specifically model the missing

data and perform approximate inference on this model using expectation

propagation and variational inference.

Faes et al. (2010) use variational inference to learn models describing the

missing data when performing regression on data in which the labels are

non-missing but some of the predictors are missing. As a result of explicitly

modelling the missing data mechanism, they did not have to make the MCAR

21

or MAR assumptions. Their method achieved high accuracy for the regres-

sion task, but was not successful in learning the parameters of the missing

data model.

Williams and Nash (2018) extend variational auto-encoders to handle missing

data. They note that there is a non-trivial dependence on the pattern of

missing data.

3.2 Imputation methods

There is a wide range of different approaches to imputing missing data.

Some of the most popular methods for imputation are MissPaLasso (Städler

et al., 2014), KNNimpute (Troyanskaya et al., 2001), Multiple Imputation by

Chained Equations (MICE) (Van Buuren and Groothuis-Oudshoorn, 2011;

Van Buuren and Oudshoorn, 1999) and MissForest (Stekhoven and Bühlmann,

2012).

However, many of these methods leave something to be desired. KNNimpute,

MissPaLasso, and many other methods, assume that the data is continuous.

Various methods, including KNNimpute and MICE, require the user to tune

a number of parameters in order to achieve good results. These parame-

ters are typically application-dependent and require domain knowledge to

appropriately specify.

MissForest uses random forests (Breiman, 2001) to perform regression impu-

tation with an iterative update scheme. Random forests are used due to their

ability to scale to high dimensional datasets, robustness to noise, ability to

handle mixed type datasets, and ability to learn non-linear relationships.

Stekhoven and Bühlmann (2012) benchmark MissForest, MICE, KNNIm-

pute, and MissPaLasso on a range of different datasets with varying propor-

tions of artificially created MCAR data. They find that MissForrest out-

performs all of the other methods they tested. The strong performance of

MissForest, in addition to the fact that it can handle both categorical and

22

continuous data and does not require tuning parameters, indicate that Miss-

Forest could be a good choice for some imputation problems.

23

Chapter 4

Design and Implementation

This chapter describes the design and implementation details of the AutoIm-

pute, my tool for missing data imputation.

4.1 Overview of AutoImpute

AutoImpute is a command line application for imputing missing data. The

implementation is written in Python 3, and uses the NumPy and SciPy sci-

entific computing libraries. All algorithms were written from scratch without

using any high-level machine learning libraries such as scikit-learn.

4.1.1 Features

AutoImpute offers a number of features for imputing missing data. For ex-

ample it includes the following imputation models:

• mean imputation (described in Section 4.2),

• single Gaussian imputation (described in Section 4.3),

• GMM imputation (described in Section 4.4), and

24

• Dirichlet process imputation (described in Section 4.5).

The parameters of the single Gaussian and GMM models can be inferred

using either MLE or MAP estimation. Additionally, Pure Bayesian inference

is supported for the single Gaussian. Bayesian inference allows automatic

model comparison to be performed between the DP model and the single

Gaussian model. This model comparison is described in Section 4.6.

The application allows the user to specify the names of input and output

files as well as the format of the input file – whether it has a header, what

kind of delimiter it uses, and the indicator for missing values.

The user can choose between different imputation policies: using the mode

of the missing data distribution to impute the most likely missing data, or

sampling from the missing data distribution to create multiple repaired files

i.e. performing multiple imputation.

The user is also able to control a number of other settings such as:

• a random seed for reproducibility,

• the formatting for floating point numbers, and

• the verbosity of the output.

4.1.2 User interface

The tool can be used by running this command:

python3 auto_impute.py [-h] [-v] [-d D] [-hd HEADER]

[-i INDICATOR] [-rs RAND_SEED] [-o FILE_NAME] [-t TEST_FILE]

[-fmt FORMAT] [-e EPSILON] [-n MAX_ITERS] [-k NUM_COMP]

[-a ASSIGNMENTS] [-mle] [-s SAMPLE | -m]

[-mi | -sg | -gmm | -dp | -mix] file

25

The arguments are described as follows.

Positional arguments

file The name of the file to repair.

Optional arguments

-h --help Show a help message and then exit.

-v --verbose Increase the verbosity of the output.

-d D --delimiter D Specify the file delimiter (default: “,”).

-hd --header Specify that the first row of the file contains

column names.

-i IND --indicator IND Specify the missing value indicator in the file

(default: “” = empty string).

-rs RS --rand seed RS Specify a random seed for reproducibility (de-

fault: none).

-o FNM --file name FNM File to write repaired files to (if unspecified

repaired files are written to stdout).

-t FNM --test file FNM File containing the ground truth so that error

metrics can be reported.

-fmt F --format F Python format string for printing floating

point numbers (default: “%.5g”).

-e EPS --epsilon EPS Stopping criterion: if LLnew − LLold < EPS

then stop training (default: EPS = 0.01).

-n MAX --max iters MAX Maximum number of iterations for VB and

EM (default: MAX = 10).

-k NUM --num comp NUM The number of mixture components for GMM

(default: K = 3).

26

-a A --assignments A Optional data type assignments for the DP-

single Gaussian mixture: “d” for discrete and

“c” for continuous. For example use “dddrrr”

for 3 discrete columns followed by 3 continuous

columns.

-mle --ml estimation Use MLE rather than the default MAP esti-

mation.

-s NUM --sample NUM Repair the file SAMPLE times by sampling from

the missing data distribution.

-m --mode Use the mode (value with the highest probabil-

ity) of the missing data distribution to repair

file (default option).

-mi --mean impute Use mean imputation to repair the file.

-sg --single gaussian Use a single Gaussian distribution to model

the missing data and repair the file.

-gmm --gaussian mix Use a Gaussian mixture model to repair the

file.

-dp --dirichlet proc Use a Dirichlet process to repair the file.

-mix --sg dp mix Use a combination of DPs and single Gaus-

sian distributions to repair the file, using au-

tomatic model selection.

4.1.3 Software engineering details

The code has been written with extensibility in mind – it should be easy to

add additional modules. Furthermore, the code has extensive commentary

and documentation throughout; the idea that code is read more than it is

written has been kept in mind throughout development.

AutoImpute has a small suite of unit-tests for each of the models, sum-

marised in Table 4.3. The unit-tests have been written as black-box tests i.e.

they treat the modules as black boxes and are only aware of the inputs and

27

outputs. This approach has been used to allow the implementation of each

module to be easy to change. More information about the unit-tests can be

found in Appendix C.

Table 4.3: Summary of unit-tests for AutoImpute.

Module Number of tests
Dirichlet process 6
Mean imputation 9
Single Gaussian 12
GMM 15
Total 42

The testing has been carried out in the testing environment described in

Table 4.4.

Table 4.4: Software specifications for the testing environment.

Software Version
Python 3.5.2 [GCC 5.4.0 20160609]
SciPy 1.0.1
NumPy 1.14.2
Ubuntu Ubuntu 16.04.4 LTS
Linux kernel 4.13.0-43-generic

Finally, git was used for version control so that the tracking of changes

and future collaboration are easier. Development was carried out on a

development branch, and commits that passed the unit tests were merged

to the master branch.

28

4.2 Mean Imputation

The mean imputation algorithm simply replaces any missing elements in xnd

the D-dimensional dataset X with the mean of the column x:,d:

p(xnd) =

1 if xnd = 1
N

∑N
i=1 xid

0 otherwise.
(4.1)

Note that with this model, each of the dimensions of the dataset are as-

sumed to be independent. As a result, imputing a D-dimensional dataset is

equivalent to imputing D one-dimensional datasets.

The benefit of this model is that it is simple to implement and very fast to

run. However, it has a number of issues: firstly, this model will produce

absurd imputations for discrete data. Consider a one-dimensional dataset

containing only 1s and 0s. The mean of this dataset will be some number

between 0 and 1. However, in the original distribution for the data there is

mass on only 2 points: 1 and 0. This is because this model is only applicable

when the underlying data type has support for the mean operation (i.e. it has

support for addition and scalar division). Secondly, because we have assumed

that each dimension of the dataset is independent, this model throws away

information about the correlation in multivariate datasets.

4.3 Single Gaussian

Modelling the distribution of a D-dimensional dataset X using a single Gaus-

sian distribution addresses the issue of throwing away information about cor-

relations. An entry xn sampled from a Gaussian distribution has a likelihood:

p(xn |θθθ) = N(xn |µµµ, ΣΣΣ) . (4.2)

If none of the elements of the dataset X are missing then the parameters can

29

be estimated as:

µµµ =
1

N

N∑
n=1

xn (4.3)

ΣΣΣ =
1

N − 1

N∑
n=1

(xn − µµµ)(xn − µµµ)T . (4.4)

However, if X contains missing elements, then the estimations above will be

biased. The estimate of the mean will be incorrect, as is illustrated in Fig-

ure 1.1, and the covariance estimate will be over-confident. See Appendix B.1

for details on the Gaussian distribution.

4.3.1 EM for MLE

To deal with the issues caused by missing values, we can use the EM al-

gorithm (described in Section 2.2.5) to iteratively determine the maximum

likelihood estimate of the parameters µµµ and ΣΣΣ of the Gaussian distribution.

The E-step is simply replacing the missing values of the dataset with their

expectations (Delalleau et al., 2018). For any data point in our dataset xn,

the probability of the missing data xnm given the non-missing data xno is:

p(xnm |xno, θθθ) = N
(
xnm

∣∣µµµm + ΣΣΣmoΣΣΣoo
−1(xno − µµµo),

ΣΣΣmm −ΣΣΣmoΣΣΣoo
−1ΣΣΣom

)
. (4.5)

The expected value of the missing data is µµµm +ΣΣΣmoΣΣΣoo
−1(xno−µµµo). Let us

define a repaired data point x̂n as x̂no = xno and x̂nm = µµµm+ΣΣΣmoΣΣΣoo
−1(xno−

µµµo). In the M-step we calculate (Delalleau et al., 2018):

µµµ =
1

N

N∑
n=1

x̂n (4.6)

ΣΣΣ =
1

N

N∑
n=1

[
(x̂n − µµµ)T (x̂n − µµµ)

]
+ C (4.7)

30

where:

Cmm =
1

N

N∑
n=1

ΣΣΣmm −ΣΣΣmoΣΣΣoo
−1ΣΣΣom. (4.8)

The notation has been used slightly unconventionally in equation (4.8): Cmm

refers to the elements of C corresponding to the missing elements of xn at

each summation iteration. Note that C is calculated using the previous

estimate for ΣΣΣ.

4.3.2 EM for MAP estimation

To reduce over-fitting, or to encode prior knowledge about the dataset into

the estimate of the parameters, we might wish to use a MAP estimate of the

parameters rather than a MLE. We will place a Gaussian-Wishart prior on

the parameters µµµ and ΛΛΛ:

p(µµµ, ΛΛΛ) = N
(
µµµ
∣∣m0, (β0ΛΛΛ)−1

)
W(ΛΛΛ |W0, ν0) (4.9)

where m0 is the prior mean, β0 is the mean precision prior, W−1
0 is the co-

variance prior, ν0 is the degrees-of-freedom prior, and W(·) is the Wishart

distribution (see Appendix B.3). The Gaussian-Wishart distribution is used

because it is a conjugate prior (see Section 2.2.1) for the multivariate Gaus-

sian distribution with unknown mean µµµ and precision ΛΛΛ.

Assuming the dataset X does not contain any missing elements, the MAP

estimate of the parameters is (Murphy, 2007):

µ̂µµ =
β0m0 +

∑N
n=1 xn

β0 +N
(4.10)

Σ̂ΣΣ =

∑N
n=1

[
(xn − µ̂µµ)T (xn − µ̂µµ)

]
+ β0(µµµ0 − µ̂µµ)T (µµµ0 − µ̂µµ) + W−1

0

ν −D
. (4.11)

If the dataset does contain missing elements, we can again use the EM algo-

rithm to iteratively determine the MAP estimate of the parameters µµµ and ΣΣΣ.

The E-step is the same as the E-step for MLE. Note, however, that we are

31

now using the MAP estimates to fill in the missing values. Recall the defini-

tion of a repaired entry x̂n: x̂no = xno and x̂nm = µµµm +ΣΣΣmoΣΣΣoo
−1(xno−µµµo).

Now in the M-step we compute:

µ̂µµ =
β0m0 +

∑N
n=1 x̂n

β0 +N
(4.12)

Σ̂ΣΣ =

∑N
n=1

[
(x̂n − µ̂µµ)T (x̂n − µ̂µµ)

]
+ C + β0(µµµ0 − µ̂µµ)T (µµµ0 − µ̂µµ) + W−1

0

ν −D
(4.13)

where C is defined as in equation (4.8).

4.3.3 Bayesian inference

Going one step further than MAP estimation, we might wish to perform

Bayesian inference to determine the posterior distribution over the param-

eters. Assuming the dataset X has no missing entries, we can update the

prior distribution over the parameters using closed form equations (Murphy,

2007):

β = β0 +N (4.14)

ν = ν0 +N (4.15)

m =
β0m0 +N x̄

β0 +N
(4.16)

W = W0 + S +
β0N

β0 +N
(m0 − x̄)T (m0 − x̄) (4.17)

where:

x̄ =
1

N

N∑
n=1

xn (4.18)

S =
N∑
n=1

(xi − x̄)T (xi − x̄). (4.19)

These updates are not valid if our dataset has missing entries. To circum-

vent this issue we can perform variational inference to iteratively perform

32

approximate versions of these updates.

4.4 Gaussian Mixture Model

Although the single Gaussian model addresses the independence assumption

of the mean imputation model, it too has flaws. For example, we are assuming

that the distribution of the data is Gaussian (which is a strong assumption

to make). We can partially address this issue by using a more flexible model.

One such model is a Gaussian Mixture Model (GMM).

Let us consider a D-dimensional data point x, which we assume has been

generated by the kth component of a mixture model with K Gaussian com-

ponents. Let us also assume, for the time being, that x contains no missing

values. We can calculate the likelihood of x as:

p(x | zk = 1, θθθk) = Nk (x |µµµk, ΣΣΣk) (4.20)

where z is a categorical variable that describes which component k is respon-

sible for x, and Nk (·) is the kth component of the mixture model with mean

µµµk and covariance ΣΣΣk. Let us now assume that x could have been sampled

from any of the K components. We let πππ be the vector of mixing proportions

for each component: πk = p(zk = 1), we then have:

p(x | {µµµk}, {ΣΣΣk}, πππ) =
K∑
k=1

πkNk (x |µµµk, ΣΣΣk) . (4.21)

We can also calculate the likelihood of a D-dimensional dataset X with N

entries:

p(X | {µµµk}, {ΣΣΣk}, πππ) =
N∏
n=1

K∑
k=1

πkNk (xn |µµµk, ΣΣΣk) . (4.22)

There are a number of unknown variables that need to be estimated: the

component means µµµk and covariances ΣΣΣk, and the mixing proportions πππ. One

33

µµµk

ΣΣΣk

xn

zn πππ

k = 1...K n = 1...N

Figure 4.1: Graphical representation of the Gaussian mixture model as de-
scribed in equation (4.24).

method for determining the parameters is to maximise the log-likelihood:

log p(X | {µµµk}, {ΣΣΣk}, πππ) =
N∑
n=1

log

[
K∑
k=1

πkNk (xn |µµµk, ΣΣΣk)

]
. (4.23)

However, maximising the sum of a logarithm is non-trivial and there is no

closed form solution for maximising the above log-likelihood. If we knew

the component assignments zn for each entry, then the complete-data log-

likelihood would be:

log p(X, Z | {µµµk}, {ΣΣΣk}, πππ) =
N∑
n=1

K∑
k=1

znk

[
log πk

+
D∑
d=1

logNk (xn |µµµk, ΣΣΣk)

]
. (4.24)

Figure 4.1 depicts the model described by this log-likelihood.

Unfortunately, we do not know the latent variables Z and they depend on πππ.

There is no closed form solution to maximising this log-likelihood. The EM

algorithm provides an iterative method for performing this maximisation.

For this model, the E-step simplifies to calculating the posterior distribution

of znk, called the responsibility:

rnk =
πkNk (xn |µµµk, ΣΣΣk)∑K
i=1 πiNi (xn |µµµi, ΣΣΣi)

. (4.25)

34

The M-step re-estimates all of the parameters of the model:

πk =

∑N
n=1 rnk
N

(4.26)

µµµk =

∑N
n=1 rnkxn∑N
n=1 rnk

(4.27)

ΣΣΣk =

∑N
n=1 rnk(xn − µµµk)T (xn − µµµk)∑N

n=1 rnk
. (4.28)

Let us now assume that there are missing elements in the dataset. In this

case the E-step must be adjusted slightly, rnk must be calculated using only

the values of X that are not missing. The M-step is also mostly unchanged.

The calculation for πk remains the same and the calculations for µµµk and ΣΣΣk

become:

µµµk =

∑N
n=1 rnkx̂nk∑N
n=1 rnk

(4.29)

ΣΣΣk =

∑N
n=1 rnk(x̂nk − µµµk)T (x̂nk − µµµk)∑N

n=1 rnk
+ Ck (4.30)

where x̂nk is defined as x̂nko = xno and x̂nkm = µµµkm+ΣΣΣkmoΣΣΣkoo
−1(xno−µµµko),

and Ck is defined as (Delalleau et al., 2018; Ghahramani and Jordan, 1996):

Ckmm =

∑N
n=1 rnk(ΣΣΣkmm −ΣΣΣkmoΣΣΣkoo

−1ΣΣΣkom)∑N
n=1 rnk

. (4.31)

Details can be found in (Delalleau et al., 2018; Ghahramani and Jordan,

1996).

4.5 Dirichlet Process

All of the models discussed so far assume that the data is continuous. One

model which does not make this assumption is a Dirichlet process (DP). A DP

is a stochastic process with two parameters: a concentration parameter α and

35

a base distribution G0. Given N data points X1, X2, ..., XN sampled from a

DP, the probability that a new entry XN+1 takes on the value x is:

p(XN+1 = x |X1, X2, ..., XN , α, G0) =
nx

N + α
+

α

N + α
G0(x) (4.32)

where nx is the number of times x occurs in X1, X2, ..., XN . The concen-

tration parameter α controls how many repetitions we expect to see in the

data, a higher α will result in fewer repetitions. The base distribution G0 is

responsible for generating previously unseen values. It can be used to encode

information about what sort of values we expect to see. Note that G0 can be

a distribution over any kind of values including discrete numbers, continuous

numbers, or strings.

With a small value for α and a large dataset, the effect of the base distribution

is minimised. As a result, a DP that has seen a large amount of data with

only a few unique values (i.e. categorical data) will begin to predict more

categorical data.

Remarkably, although the probability of XN+1 depends on all of the pre-

vious values X1, X2, X3, ..., XN of X, the joint probability distribution of

p(X1, X2, ..., XN+1 |α, G0) is independent of order.

4.6 Bayesian Model Comparison

Using a Bayesian approach to machine learning gives us a principled way

for choosing the best model for a particular dataset. Perhaps unsurprisingly,

this approach is based on Bayes’ rule. We noted in Section 2.2.4 that when

inferring the parameters of the model, the denominator in Bayes’ rule is

a normalising constant. However, we will now see that the evidence was

ignorable only for the first level of inference, in which we assumed the model

was correct and inferred the parameters, but will no longer be ignorable in the

second level of inference, in which we will infer which model is best (MacKay,

2003, ch 28).

36

Let M be a random variable that represents our choice in model. We can now

write Bayes’ rule to determine the posterior probability for a model given the

data X:

p(M = i |X) =
p(X |M = i) p(M = i)∑I
i=1 p(X |M = i) p(M = i)

(4.33)

where p(M = i) is the prior probability that model i is correct, and I is

the total number of models we are considering. The likelihood of the data

given the model p(X |M = i) is actually the evidence from the first level of

inference.

If we set the prior probabilities for all of the candidate models to be the

same then determining which model best describes the data, is equivalent to

determining which model has the largest evidence. One of the main benefits

of this approach is that it embodies Occam’s Razor, the idea that the simplest

explanation for the data is probably the correct one. This is because the

evidence naturally punishes complex models with too many parameters, and

rewards models which have just enough parameters to explain the data.

Unfortunately, calculating the evidence is often intractable, as a result the

evidence must often be approximated. One common choice for this approx-

imation is the Bayes’ factor, which approximates the evidence using the

product of the best-fit likelihood and the Occam factor (which is derived

by approximating the posterior as Gaussian distribution using Laplace’s ap-

proximation) (MacKay, 2003, ch 28).

However, the Gaussian distribution has a closed form equation for the evi-

dence. In particular, the evidence for a single Gaussian distribution with a

Gaussian-Wishart prior is given by Murphy (2007):

p(X) =
1

πND/2
Γd(ν/2)

Γd(ν0/2)

|W−1
0 |ν0/2

|W−1|ν/2

(
β0
β

)D/2
(4.34)

where X is the N×D dataset and Γd(·) is the multivariate Gamma function.

β0, ν0, and W0 are the prior parameters, and β, ν, and W are the posterior

37

parameters, defined in equation (4.14), equation (4.15), and equation (4.17).

The evidence for the DP is also straight forward to compute because we are

not inferring any parameters. We can think of this as placing a delta prior

on the parameters:

p(X) =

∫
θθθ

p(X |θθθ) p(θθθ) dθθθ (4.35)

=

∫
θθθ

p(X |θθθ) δ(θ) dθθθ (4.36)

= p(X |θθθ) (4.37)

from which we can see that the evidence is equal to the likelihood.

Using equations (4.34) and (4.37), we can perform model comparison between

a single Gaussian distribution and a DP.

38

Chapter 5

Evaluation

5.1 Simple Examples

To better understand how AutoImpute works – where it fails and where it

succeeds – we can consider simple example datasets that highlight different

aspects of the behaviour of the tool and the implemented models.

Let us first discuss examples for which the tool fails. Figure 5.1 shows two

example datasets that will cause the tool to fail. The first dataset has an

invalid entry in the fourth row of each column. In the first column, a string is

present in an integer column. If a column is all strings, the tool will attempt

to convert them to numeric values, but mixed strings and numeric values, or

any strings that cannot be converted to numeric values, are not supported.

In the second and third columns, the values ∞ and NaN will cause failures.

Although both values are valid floating point numbers, due to their nature

they will cause many mathematical operations to produce unsupported re-

sults. In the fourth column, no value has been entered. AutoImpute requires

missing values to be explicitly indicated with a predefined string. This choice

was made to prevent errors caused by incorrectly specified input files. The

second dataset in Figure 5.1 has a more subtle problem that will only be ob-

served when using maximum likelihood estimation. The estimated variance

39

1 1 1 1

2 2 2 2

3 3 3 3

‘4’ ∞ NaN

? ? ? ?

0.1 1 0.1 1

0.2 1 5 3

0.3 1 5 ?

? 1 0.1 ?

? ? ? ?

, Error

Figure 5.1: Pathological examples. Each column in the 4th row of the left
table has an invalid value that will cause AutoImpute to fail. The right table
has a subtle issue that is only observed when using MLE. The 2nd column
has only 1 unique value, as a result the MLE of the variance will go to 0 and
the likelihood for the values in the column will become arbitrarily high. This
problem does not occur with MAP estimation or Bayesian Inference.

for the second column will become arbitrarily small causing numerical issues.

Note that this is not a defect of AutoImpute but rather of MLE. For this

reason, the default behaviour of AutoImpute is to use MAP estimation.

One way to better understand the characteristics of a probabilistic machine

learning algorithm is to sample from its prior distribution. We can use Au-

toImpute to fill in a completely empty file where 100% of the values are

missing. This use of AutoImpute lets us look at samples from the prior of

whichever algorithm was selected for the imputation. Figure 5.2 shows two

samples from a Dirichlet process. The rich get richer property of the DP

is evident here, as there are a number of columns in which the values are

mostly repeated. This gives us an idea of the value of α: small values of α

tend to have more repetitions and higher values of α tend to produce more

values from the base distribution G0. Similarly, we can get an idea of G0 by

looking at the entire set of values present.

Figure 5.3 shows two samples from a single Gaussian distribution. Looking

at these samples it seems that the variance is small, compared to the base

distribution of the DP in Figure 5.2, and that the mean is close to the zero

vector.

The specific values of the prior parameters are not what is important here.

40

? ? ?

? ? ?

? ? ?

? ? ?

1850.4 -10681 5805.2

6388.9 -15977 -9329.4

6388.9 8728.9 5805.2

6388.9 -15977 5805.2

5192.8 -3985.2 -11630

9652.7 -11844 -11630

-2121.4 6703.9 -11630

-2121.4 -3985.2 -8802.2

,

Figure 5.2: DP prior sampling. Two samples from a DP with α = 0.5 and
G0 = N(0, 10000).

? ? ?

? ? ?

? ? ?

? ? ?

-0.1084 -0.1230 0.4914

0.1539 0.4858 -0.2336

-0.3940 -0.2160 -0.0261

0.0823 -0.0964 -0.1299

-0.5151 0.3033 0.0970

0.1007 -0.5903 -0.4197

-0.0492 0.3037 -0.8623

0.0428 -0.3266 -0.0089

,

Figure 5.3: Single Gaussian prior sampling. Two samples from a single
Gaussian with W0 = I3 and m0 = (0, 0, 0).

The key takeaway is that we can develop an intuition for the prior beliefs of

our models by imputing files that contain only missing values.

Now let us look at samples from the posterior distributions of our models.

Figure 5.4 shows two samples from a DP when imputing a simple input

dataset. Once again, we see the rich get richer property of the DP. Most

of the imputed values look plausible, with the exception of the bottom-right

value in the second sample. This value is sampled from the base distribu-

tion G0. Strange results like these become less likely as the amount of data

increases because α becomes small relative to N (see equation (4.32)). In-

ferring the base distribution from the data could also diminish this problem.

Note that, for the most part, the data types of each column are maintained.

The imputation samples that are drawn from a single Gaussian, shown in

Figure 5.5, illustrate that with a small amount of non-missing data, most of

the samples are similar to the prior samples, shown in Figure 5.3. However,

the bottom-right element of the first sample illustrates how the posterior

distribution has been influenced by the data.

41

0.1 1 0.1

0.2 1 5

0.3 1 5

? 1 0.1

? ? ?

0.1 1 0.1

0.2 1 5

0.3 1 5

0.2 1 0.1

0.2 1 5

0.1 1 0.1

0.2 1 5

0.3 1 5

0.2 1 0.1

0.1 1 17529

,

Figure 5.4: Simple DP example. Two imputation samples of a simple input
dataset using a DP with α = 0.5 and G0 = N(0, 10000). The curious value
in the bottom-right corner of the second sample was clearly drawn from G0

and not a repetition of a previous value from that column.

0.1 1 0.1

0.2 1 5

0.3 1 5

? 1 0.1

? ? ?

0.1 1 0.1

0.2 1 5

0.3 1 5

0.9242 1 0.1

-0.0971 -0.4663 4.2161

0.1 1 0.1

0.2 1 5

0.3 1 5

-0.0087 1 0.1

0.3876 -0.0480 -0.0103

,

Figure 5.5: Simple single Gaussian example. Two imputation samples of a
simple input dataset using a single Gaussian with W0 = I3, m0 = (0, 0, 0),
β0 = 1 and ν0 = 1.

42

Table 5.1: 5 random rows, with no missing data, from the Boston Housing
dataset. The first row is the column number, and last row in this table shows
the predicted data type – D indicates discrete and C indicates continuous.

1 2 3 4 5 6 7 8 9 10 11 12 13

6.7177 0 18.1 0 0.713 6.749 92.6 2.3236 24 666 20.2 0.32 17.44

0.1106 0 13.89 1 0.55 5.951 93.8 2.8893 5 276 16.4 396.9 17.92

2.4495 0 19.58 0 0.605 6.402 95.2 2.2625 5 403 14.7 330.0 11.32

0.1717 25 5.13 0 0.453 5.966 93.4 6.8185 8 284 19.7 378.1 14.44

0.0136 75 4 0 0.41 5.888 47.6 7.3197 3 469 21.1 396.9 14.8

C D C C C C C C D D C C C

5.2 Model Comparison

Using model comparison we can estimate the data type classifications for

each column in a dataset. Consider the example in Table 5.1, which depicts

five rows chosen randomly from the Boston Housing dataset (Harrison and

Rubinfeld, 1978), and the data type of each column as predicted by using

model comparison. The model for continuous data is a single Gaussian with

W0 = I1×10000, m0 = (0, 0, 0), β0 = 1 and ν0 = 1 and the model for discrete

is a DP with α = 0.5 and G0 = N(0, 10000). Note that the labels “discrete”

and “continuous” are slightly misleading because what is really being com-

pared is the evidence for a DP and a single Gaussian distribution. However,

with a good choice for the parameters of these models, these evidences can

be thought of as proxies for “discrete” and “continuous”.

Most of the columns seem reasonably labelled – columns with floating point

numbers tend to be labelled as continuous and columns with integers tend to

be labelled as discrete. However, column 4, which is a binary variable, has

been labelled as continuous. This can be explained by noting that in the 506

rows there are only 35 1’s. As a result, the posterior variance of the single

Gaussian becomes small and the likelihood becomes large.

Let us once again investigate the behaviour of the tool by considering results

43

Table 5.2: Toy model comparison example datasets.

(a) 1 & 0

0 0 1

0 1 1

0 ? 0

0 ? ?

1 ? ?

? ? ?

(b) e

2.71828 2.71821 2.71821 1000

2.71828 2.71822 100000 110

2.71828 2.71848 ? 9

? ? ? ?

? ? ? ?

? ? ? ?

(c) e & π

2.71828 2.71828 3.14159 2.71828

2.71828 3.14159 3.14159 ?

2.71828 ? 3.14159 ?

2.71828 ? 3.14159 ?

? ? 2.71828 ?

? ? 2.71828 ?

from some simple examples datasets, shown in Table 5.2.

First, let us consider how the prior affects the model comparison by compar-

ing two single Gaussian distributions with different prior means m0. Table 5.3

shows the marginal likelihood of each model for each column in each dataset,

and the ratio of the m0 = 0 model’s marginal likelihood to the m0 = 1

model’s marginal likelihood. For “1 & 0”, the results make sense. Firstly,

in the case that there are more 1s, the model with a prior mean of 0 has a

lower marginal likelihood and vice versa. Secondly, in the case that there

are an even amount of 1s and 0s the marginal likelihoods are even. Finally,

the higher the ratio of one of the numbers to the other, the higher the ratio

of marginal likelihoods for the corresponding model prior. The results for

“e” and “e & π” also make sense. For the cases in which the numbers ran-

dom selections of es and πs, the model with a prior mean of 1 has a higher

marginal likelihood, and, for the cases in which there are numbers that are

much bigger than both 0 and 1, the marginal likelihoods are approximately

equal.

Now let us consider model comparison between a single Gaussian distribution

and a Dirichlet process. Table 5.4 shows the marginal likelihood of each

model for each column in each dataset, and the ratio of the single Gaussian

model’s marginal likelihood to the DP model’s marginal likelihood. Let us

compare columns 2 and 4 of e. Both columns have 3 unique values but for

44

Table 5.3: Comparison of marginal likelihoods for two single Gaussian distri-
butions. Both Gaussian distributions have the same prior distributions with
the exception of the mean: W0 = 10000, ν0 = 1, and β0 = 1.

1 and 0 e e and π

col 1 2 3 1 2 3 4 1 2 3 4

m0 = 0 3.8×
10−4

3.4×
10−3

4.9×
10−4

3.9×
10−6

3.9×
10−6

9.3×
10−29

5.9×
10−19

9.6×
10−8

1.6×
10−7

2.4×
10−8

3.0×
10−6

m0 = 1 7.2×
10−5

3.4×
10−3

1.6×
10−3

3.9×
10−5

3.9×
10−5

9.3×
10−29

5.9×
10−19

6.0×
10−6

6.5×
10−6

7.8×
10−7

1.9×
10−4

ratio 0.84 0.50 0.23 0.09 0.09 0.50 0.50 0.02 0.02 0.03 0.02

column 2 the Gaussian has a higher marginal likelihood than the DP. This is

because the values in column 2 are much closer together and as a result, the

posterior variance of the Gaussian is small where as the posterior variance

for column 4 is relatively large. The only other times that the DP has a

higher marginal likelihood than the Gaussian are the cases in which there is

only one unique value in a column. This might be surprising since one might

imagine that the posterior variance of the Gaussian would be small in these

cases. However, because the prior variance is relatively high compared to the

sample variance, the small sample size results in a posterior variance that is

still large. This result, as well as those from Table 5.3, highlight the effect

of the prior distribution in Bayesian inference – particularly in cases where

there is little data.

5.3 Effect of Missing Data Percentage

As the percentage of missing data increases, one might expect the perfor-

mance of the imputation method to degrade because there are fewer exam-

ples from which to learn the distribution of the data. Figure 5.6 shows how

two different metrics are affected by the amount of missing data. The first

metric is the root-mean-squared-error between the imputed data xi and the

45

Table 5.4: Comparison of marginal likelihoods for a single Gaussian distri-
bution and a Dirichlet Process. The Gaussian distribution has the following
prior parameters: m0 = 0, W0 = 10000, ν0 = 1, and β0 = 1. The DP has
parameters α = 0.5 and G0 = N(0, 10000).

1 and 0 e e and π

col 1 2 3 1 2 3 4 1 2 3 4

SG 3.8×
10−4

3.4×
10−3

4.9×
10−4

3.9×
10−6

3.9×
10−6

9.3×
10−29

5.9×
10−19

9.6×
10−8

1.6×
10−7

2.4×
10−8

3.0×
10−6

DP 4.0×
10−11

2.7×
10−10

1.1×
10−10

1.1×
10−5

2.1×
10−15

5.1×
10−32

2.1×
10−15

9.1×
10−6

2.7×
10−10

7.3×
10−12

2.0×
10−5

ratio 1.00 1.00 1.00 0.27 1.00 1.00 0.00 0.01 1.00 1.00 0.13

true data xt:

RMSE =

√∑
n∈m(xin − xtn)2

|m|
(5.1)

where m is the set of indices for missing data. For this metric lower is better.

The second metric is the average log-likelihood of the true data xt:

Average LL =

∑
n∈m log p(xtn |X:o)

|m|
(5.2)

where p(xtn |X:o) is the probability of the true data given the non-missing

data (that was used to infer the parameters of the model). For this metric

higher is better. As expected, both metrics become worse as the percentage

of missing data increases. Note that the relative performance of the different

models is not important here, because that simply indicates that for this

particular dataset certain models perform better than others.

5.4 Sampling Illustration

Consider the problem of performing principal component analysis (PCA) on

a dataset with missing entries. A naive solution would be to do a complete

46

10 20 30 40 50 60 70 80 90

0.5

1

1.5

% missing data

R
M

S
E

SG
GMM3

DP
MI

10 20 30 40 50 60 70 80 90

−8

−6

−4

−2

% missing data

A
ve

ra
ge

L
L

SG
GMM3

DP

Figure 5.6: Affect of missing data percentage on different performance met-
rics. The data is MCAR. The results are averaged over 10 runs and 1 standard
deviation is depicted by the error bars.

47

0 1 2 3 4 5 6 7 8

0

1

2

3

Petal width

P
et

al
le

n
gt

h

Complete data
Missing data

Sampled PCA
Complete case PCA

True PCA

Figure 5.7: Illustration of a use case for sampling multiple imputations be-
fore running subsequent analyses. The dotted black line shows correct the
principal component of the Iris data set. The dashed red line shows the prin-
cipal component of the Iris dataset after performing listwise deletion. The
partially transparent blue lines show principal components calculated from
100 repaired datasets sampled from a single Gaussian distribution.

case analysis: remove any entries with missing elements, and then perform

PCA. However, this would not give any estimate for the variance in the prin-

cipal components. On the other hand, by performing PCA on samples of

imputed datasets we can get a distribution of principal components. Fig-

ure 5.7 depicts this scenario. Although many of the principal components

calculated from the imputed datasets are incorrect, the distribution of these

components gives a much clearer picture of what the true principal compo-

nent could be. Compare this with the principal component of the dataset

after listwise deletion has been performed which is incorrect and does not

give any indication of uncertainty.

5.5 Comparison with MissForest

The Boston Housing dataset (Harrison and Rubinfeld, 1978) and Iris dataset (Fisher,

1963) were used to benchmark AutoImpute and MissForest. I wanted to in-

48

vestigate the performance of AutoImpute and MissForest for different types

of missing data as well as different ratios of missing to non-missing data.

To create the datasets with missing entries, the following procedures were

performed on a dataset X with N rows and D columns.

Missing completely at random (MCAR): For each entry xnd in the original

dataset, randomly erase the element with a probability p.

Missing at random (MAR): Randomly choose a set c of bD/5c columns from

X. For each row in X calculate αn =
∑

d∈c xnd. For each of the rows

corresponding to the smallest
√
p × (1 − bD/5c/D)−1 values of αn, remove

the elements xnd for which the column d is not in c, with a probability
√
p. In

this case, approximately 4/5 columns will have values removed, and for each

of those columns, approximately
√
p×5/4 of the entries will be removed with

a probability of
√
p, thus the overall percentage of removes entries will be

approximately p. Note that as p becomes larger, the approximation becomes

less accurate.

Not missing at random (NMAR): For each column in X, remove the bp×Nc
lowest values.

Figure 5.8 shows the results of using MissForest, a GMM with 3 components,

and mean imputation to repair the Iris and Boston Housing datasets with

the missing data patterns described above. The MissForest imputation used

the default settings described in Stekhoven (2016). The GMM parameters

were inferred using the EM algorithm to determine the MAP estimate. The

hyper-parameters were m0 = (0, ..., 0)T , W0 = ID, β0 = 1, and ν0 = 1. The

EM algorithm was stopped after the average LL improved by less than 0.01,

or after 100 iterations, whichever occurred first.

The results show that in almost every case, MissForest outperforms the

GMM. Similarly, the GMM almost always outperforms the baseline of mean

imputation.

We can also see that, as expected, for each of the methods, the performance

is best for the MCAR case and worst for the NMAR case.

49

10 20 30 40 50
0

0.1

0.2

0.3

(a) Iris MCAR

10 20 30 40 50
0

5

10

15

(b) Boston MCAR

10 20 30 40 50
0

0.2

0.4

0.6

0.8

(c) Iris MAR

10 20 30 40 50
0

20

40

(d) Boston MAR

10 20 30 40 50
0

0.5

1

1.5 MissForest
GMM3

MI

(e) Iris NMAR

10 20 30 40 50
0

50

100

(f) Boston NMAR

Figure 5.8: Comparison between MissForest and AutoImpute for the Iris
and Boston Housing datasets with MCAR, MAR, and NMAR missing data
of different percentages. The x-axes are % missing data and the y-axes are
RMSE – see equation (5.1). The results are averaged over 10 runs and 1
standard deviation is depicted by error bars.

50

Chapter 6

Summary and Conclusions

This dissertation investigated the problem of handling missing data. To

facilitate this investigation, a tool called AutoImpute was built. Building

this tool highlighted a number of challenging aspects that arise when working

with missing data. Probabilistic machine learning techniques offer solutions

to some of these challenges. For example, Bayesian inference avoids the

problem of over-fitting, and provides a principled way of incorporating prior

knowledge about a dataset into the imputation of missing values.

Bayesian model comparison offers a mathematically correct method for de-

termining which model best describes a dataset. Bayesian model comparison

may also be useful as a way of inferring the data types of variables in a

dataset.

As a result of using probabilistic machine learning methods, multiple imputa-

tion is as simple as drawing multiple samples from the posterior distribution

of the data. We can also impute by replacing missing values with the mode

of the posterior distribution.

However, inferring the distribution of missing data can be challenging. Even

if the MAR or MCAR assumptions are made, the missing data makes it

difficult to derive closed form equations for the parameters of the distribution,

or estimates of them. As a result, we have to resort to using approximate

51

inference techniques, such as the EM-algorithm and Variational Bayes.

The evaluation of methods for dealing with missing data are difficult, too.

It is not possible to compare to the “correct answer” on real datasets with

missing values, where the ground truth is not known. Artificial datasets

can be created by manually removing values and can be tested objectively

because the correct values are known. But it is not clear to what extent these

results generalise to real-world datasets.

6.1 Future Work

There are a number of directions for future work on the topic of dataset

repair. One such direction is the improvement of the models for missing

data. Dirichlet process (DP) models are not confined to numeric values, and

a DP could be used to impute missing values in the presence of NaNs and∞s

by treating these poorly behaved floating point numbers as special symbolic

values or as strings. It is also possible infer the parameters of the DP which

would reduce the requirement of choosing good values for these parameters.

The DP provides another attractive area for future work: the DP mixture

model, which can be thought of a mixture model with an infinite number

of components. Unfortunately, having an infinite number of components

means that exact inference in such models is not generally possible. How-

ever, approximate inference techniques such as MCMC and VB exist for such

models (Rasmussen, 2000; Blei and Jordan, 2006). By using a DP mixture

model, the problem of choosing the correct number of mixture components

can be avoided.

Another opportunity for improvement is calculation of the evidence for the

GMM. Solving this challenge could help with the problem of choosing the

correct number of mixture components, because models with different num-

bers of components could be compared directly and fairly. It would also allow

for better modelling of continuous variables when detecting data types.

52

Other techniques for imputing missing data, such as Random Forests, could

also be incorporated into AutoImpute.

Another direction for future work is improvements to the AutoImpute appli-

cation. A first step in this direction would be to improve the coverage of the

test suite which would streamline other improvements.

The user interface (UI) and user experience (UX) for the tool could also be

greatly improved. The error reports might be unhelpful to inexperienced

users who might not understand why the application failed. The command

line UI is often too verbose and could definitely be streamlined. For exam-

ple, it would be nice to have --fast and --exhaustive modes that would

perform a simple but fast imputation, or a exhaustive search over different

models to find the best imputation method, respectively. Supporting mul-

tiple indicators for missing values would be a useful feature. Future work

could involve user studies aimed at improving UI and UX.

Finally, there are a number of opportunities for future work in the evaluation

of different algorithms for imputing missing data. Adding more datasets to

the analyses would be an easy improvement to make.

Benchmarking against additional methods, other than MissForest, would

also be interesting. MICE (Van Buuren and Oudshoorn, 1999), KNNim-

pute (Troyanskaya et al., 2001), and MissPaLasso (Städler et al., 2014),

discussed in Section 3.2, are all potential candidates for comparison. The

analysis done by Stekhoven and Bühlmann (2012) could be extended to in-

clude MAR and NMAR data.

Comparing the different imputation methods by additional metrics could

contribute to a clearer picture of when one method might be more appropriate

than another. One metric that would be interesting to consider is running

time. The Pareto-frontier comparing accuracy and running time of different

methods could be interesting to investigate.

Missing data imputation is an open and challenging field which leads to many

exciting and interesting opportunities for future work.

53

Appendix A

Notation

All of the notation used in this dissertation is described as it is introduced.
The following table provides a quick reference for all of the notation if needed.

Example Meaning
X random variable
x vector
x = (x1, x2, x3) column vector
x = (x1, x2, x3)

T row vector
X matrix
In n× n identity matrix
0n n× n zero matrix
XT matrix transpose
X−1 matrix inverse
Tr(X) the trace of X
xi ith element of a vector x
xc vector of elements whose indices are in the set c
xij element at the ith row and jth column of a matrix X
Xij sub-matrix of elements whose row and column indices are

in the sets i and j, respectively
xi ith row of the matrix X
x:j jth column of the matrix X
Xij
−1 the inverse of a sub-matrix

X−1ij the sub-matrix of an inverse
(a, b) a range of values between a and b, inclusive
ŷ an estimator for the variable y
Γ(z) the Gamma function Γ(z) =

∫∞
0
xz−1e−x dx which gener-

alises the factorial function to real numbers

54

DKL(q || p) the KL-divergence between q(Z) and p(Z |X):∫
X
q(Z) log q(Z)

p(Z |X)
dX

x the one hot representation of a categorical variable x -
xd = 1 if x is class d, otherwise xd = 0

{xi} the set containing xi for all i
X:m the elements of the dataset X that are missing
X:o the elements of the dataset X that are not missing
xnm the elements of the nth row of the dataset X that are

missing
xno the elements of the nth row of the dataset X that are not

missing
b·c the floor operation

Note that the inverse of a sub-matrix (Xij
−1) is not the same as the sub-

matrix of an inverse (X−1ij).

55

Appendix B

Important Probability
Distributions

The following distributions are used throughout this dissertation. They serve
as the basis for many of the imputation models presented in Chapter 4.

B.1 Gaussian

The Gaussian, or normal, distribution is a distribution over continuous values
in RD. If a D-dimensional variable x is Gaussian distributed, then:

N (x|µµµ,ΣΣΣ) =
1√

(2π)D|ΣΣΣ|
exp

(
− 1

2
(x− µµµ)TΣΣΣ−1(x− µµµ)

)
(B.1)

where µµµ is a D-dimensional vector of means, and ΣΣΣ is a D×D symmetric and
positive definite covariance matrix. It is sometimes mathematically conve-
nient to use an alternative parametrisation of the Gaussian with a precision
matrix ΛΛΛ = ΣΣΣ−1.

A special case is the 1-dimensional Gaussian distribution which can be writ-
ten as:

N(x |µ, σ) =
1√

2πσ2
exp−(x− µ)2

2σ2
(B.2)

56

where µ and σ2 are the mean and variance.

The Gaussian distribution has a number of useful properties. Firstly, the
marginal and conditional distributions of a multivariate Gaussian with re-
spect to any subset of the variables are also Gaussian. Concretely, consider
a partition of x into xa and xb. Similarly µµµ is partitioned into µµµa and µµµb,
and ΛΛΛ is partitioned into ΛΛΛaa, ΛΛΛab, ΛΛΛba and ΛΛΛbb. Now:

p(xa) = N
(
xa

∣∣µµµa, ΛΛΛaa
−1) (B.3)

and

p(xa |xb) = N
(
xa

∣∣µµµa −ΛΛΛaa
−1ΛΛΛab(xb − µµµb), ΛΛΛaa

−1) (B.4)

which are both Gaussian (Bishop, 2006, ch 2). Figure B.1 gives an example
of this property, showing a joint Gaussian distribution as well as examples
of Guassian marginal and conditional distributions. Finally, the conjugate-
prior (see Section 2.2.1) for µµµ is its self a Gaussian. Conjugate-prior for
the covariance and precision matrices are the inverse Wishart and Wishart
distributions, discussed in Section B.4 and Section B.3.

−4 −2 0 2 4
−4

−2

0

2

4

X

Y

−4 −2 0 2 4

0

0.2

0.4

X

p
(·)

p(X)
p(X |Y)

Figure B.1: An illustration of Gaussian distributions. On the left is p(X, Y)
the joint distribution between two random variables X and Y . On the right
is p(X), the marginal distribution of X, and p(X |Y = 1), the conditional
distribution of X given that Y = 1.

57

B.2 Categorical

The categorical distribution is a multivariate discrete distribution. If x is a
D-dimensional one-hot variable which indicates that x is one of D different
classes:

Cat(x |πππ) =
D∏
d=1

πxdd (B.5)

where πππ = (π1, ..., πD) is a vector of probabilities for each of the classes x
could take, and xd is the dth value of x that is 1 only if x is class d and is 0
otherwise. Note that 0 ≤ πd ≤ 1 and

∑
d πd = 1. A conjugate-prior for the

categorical is the Dirichlet distribution, discussed in Section B.5.

B.3 Wishart

The Wishart distribution is a distribution over precision matrices. If ΛΛΛ is
Wishart distributed then:

W(ΛΛΛ|W, ν) =
|ΛΛΛ|(ν−D−1)/2 exp(−Tr(W−1ΛΛΛ)/2)

2νD/2|W|ν/2πD(D−1)/4
∏D

d=1 Γ((ν + 1− i)/2)
(B.6)

where W is a D×D symmetric and positive definite scale matrix (precision
prior), and ν > D − 1 is the degrees of freedom.

B.4 Inverse Wishart

The inverse Wishart distribution is a distribution over covariance matrices.
If ΣΣΣ is Wishart distributed then:

W−1(ΣΣΣ|W, ν) =
|W|ν/2 exp(−Tr(WΣΣΣ−1)/2)

2νD/2|ΣΣΣ|−(ν+D+1)/2πD(D−1)/4
∏D

d=1 Γ((ν + 1− i)/2)
(B.7)

58

where W is a D×D symmetric and positive definite scale matrix (covariance
prior), and ν > D − 1 is the degrees of freedom.

B.5 Dirichlet

The Dirichlet is a distribution over D-dimensional vectors πππ, subject to the
constraints:

0 ≤ πd ≤ 1 and
∑
d

πd = 1. (B.8)

That is, πππ is Dirichlet distributed if:

Dir(πππ|ααα) =
Γ(
∑

d αd)∑
d Γ(αd)

D∏
d=1

παd−1
d (B.9)

where ααα is a D-dimensional vector subject to the constraint that αd > 0 for
all d. The Dirichlet distribution only has finite density at all points if αd ≥ 1
for all d. One useful property of the Dirichlet distribution, when it is used
as a conjugate prior for the categorical distribution, is that setting αd = 1
for all d results in a uniform distribution. When the Dirichlet distribution
is used as a conjugate prior for the categorical distribution, each αd can be
interpreted as pseudo-count for observations of the dth class in the categorical
distribution. A special case of the Dirichlet distribution is when αd is the
same for all values of d – this is called a symmetric Dirichlet distribution
and it is often encountered as a conjugate prior. Figure B.2 gives examples
showing the effect of α is a symmetric Dirichlet distribution.

59

0 1 2 3 4 5 6 7 8 9

0

0.5

1

π

α = 0.1

0 1 2 3 4 5 6 7 8 9

α = 1

0 1 2 3 4 5 6 7 8 9

α = 10

Figure B.2: Categorical distributions with 10 classes sampled from symmet-
ric Dirichlet distributions with different α values. Small values of α, cor-
responding to a few prior pseudo-counts of each class, generate categorical
distributions with high variance. Large values of α, corresponding to large
prior pseudo-counts for each category, result in categorical distributions with
low variance.

60

Appendix C

Testing

This appendix describes the unit-tests for AutoImpute, and gives their out-
put.

C.1 Mean imputation

Test name Description Output
NoMissingValuesRMSE Tests that when there are no missing val-

ues the prediction RMSE is 0.
OK

NoMissingValuesLL Tests that the missing data log-likelihoods
for a toy dataset are correct.

OK

OneValueResult Tests that when there is only one non-
missing value, the mean imputation will
return exactly that value.

OK

TwoValuesResult Tests that when there are only two non-
missing values, the mean imputation will
return the correct value.

OK

AllMissingValues Tests that when there are no observed val-
ues the results of mean imputation are all
0s.

OK

AllMissingValuesLL Tests that when there are no observed val-
ues the missing data log-likelihoods are
correct.

OK

NoRows Tests that if a dataset with no rows is the
input then an error will be thrown.

OK

61

NoCols Tests that if a dataset with no columns is
the input then an error will be thrown.

OK

OneColumnAllMissing Tests that the mean imputation works if
given only 1 column.

OK

C.2 Dirichlet process

Test name Description Output
EandPiResult Tests the predictions of the maximum like-

lihood imputation of the DP using.
OK

EandPiLL Tests the missing data log-likelihoods of
the maximum likelihood imputation of the
DP.

OK

NotAllZerosGivenNoObs Tests that the sample function works when
given only missing data.

OK

SingleColumnSample Tests that a) the DP works on a single
column, and that b) if there are no miss-
ing values the output will be the observed
data.

OK

SingleColumnMultiple Tests that all samples from a dataset with
no missing values will be the same.

OK

OneColumnAllMissing Tests that the maximum likelihood pre-
diction of the DP on a dataset with only
missing values is the mode of the base dis-
tribution G0.

OK

C.3 Single Gaussian

Test name Description Output
NoMissingValuesRMSE Tests that if there are no missing values

the prediction RMSE is 0.
OK

NoMissingValuesLL Tests that the average missing data log-
likelihood is not a number when there is
no missing data.

OK

62

AllMissingValuesMLERes Tests that the maximum likelihood predic-
tions before and after fitting a single Gaus-
sian with MLE are the same if all the data
is missing.

OK

OneValueMLEResult Tests that the maximum likelihood predic-
tions of an MLE single Gaussian are cor-
rect when there is only 1 non-missing value
in each column.

OK

TwoValuesMLEResult Tests that the maximum likelihood pre-
dictions of an MLE single Gaussian are
correct when there are only 2 non-missing
values in each column.

OK

TwoValueMAPResult Test that the maximum likelihood predic-
tion of a MAP estimated single Gaussian
are correct when there are only 2 non-
missing values in each column.

OK

TwoValuesSamplesDiff Tests that samples from the single Gaus-
sian are not identical.

OK

IndependentVsDependent Tests that a single Gaussian with a di-
agonal covariance matrix performs worse
than one with a full covariance matrix,
when the dataset has correlation between
its variables.

OK

OneColumnPred Tests that the single Gaussian works for a
dataset with a single column.

OK

OneColumnSample Tests that samples drawn for the same
variable are different.

OK

OneColumnLL Tests that single Gaussians with diagonal
and full covariance matrices will perform
equivalently on a single variable dataset.

OK

OneColumnAllMissing Tests that for a dataset with a single col-
umn, if all the values are missing, the pre-
dictions before and after using MAP esti-
mation will be the same.

OK

63

C.4 Guassian Mixture Model

Test name Description Output
NoMissingValuesRMSE Tests that if there are no missing values

the prediction RMSE is 0.
OK

NoMissingValuesLL Tests that the average missing data log-
likelihood is not a number when there is
no missing data.

OK

AllMissingValuesMLERes Tests that the maximum likelihood predic-
tions, before and after fitting a single com-
ponent GMM with MLE, are the same if
all the data is missing.

OK

AllMissValu

esMLEResMult

Tests that the maximum likelihood predic-
tions, before and after fitting a three com-
ponent GMM with MLE, are the same if
all the data is missing.

OK

OneColumnAllMissing Tests that the maximum likelihood pre-
dictions, before and after fitting a single
component GMM with MLE to a single
variable dataset, are the same if all the
data is missing.

OK

OneValueMLEResult Tests that the maximum-likelihood pre-
dictions of an MLE GMM are correct
when there is only 1 non-missing value in
each column.

OK

TwoValueMLEResult Tests that the maximum-likelihood pre-
dictions of an MLE GMM are correct
when there is only 2 non-missing value in
each column.

OK

TwoValuesSamplesDiff Tests that samples from the GMM are not
identical.

OK

IndependentVsDependent Tests that a GMM with a diagonal co-
variance matrices for the components per-
forms worse than one with full covariance
matrices, when the dataset has correlation
between its variables.

OK

OneColumnPred Tests that the GMM works for a dataset
with a single column.

OK

OneColumnSample Tests that samples drawn for the same
variable are different.

OK

64

OneColumnLL Tests that GMMS which have components
with diagonal and full covariance matrices
are equivalent on a single variable dataset.

OK

TwoCompLLWorseThan10 Tests that a MLE GMM with 2 com-
ponents has a lower missing data log-
likelihood than one with 10 components.

OK

MAPandMLEGiveDifferentLLTests that the MAP estimate and MLE for
the GMM parameters are different.

OK

TenCompMAPIris50 Tests that a 10 component GMM with
MAP estimation makes predictions for the
Iris dataset (Fisher, 1963) with 50 MCAR
data.

OK

65

Bibliography

Baum, Leonard E., Petrie, Ted, Soules, George and Weiss, Norman
(1970). A Maximization Technique Occurring in the Statistical Analysis
of Probabilistic Functions of Markov Chains. The Annals of Mathematical
Statistics, 41(1) 164–171. ISSN 0003-4851. URL http://projecteuclid.

org/euclid.aoms/1177697196.

Bishop, Chris M. (2006). Pattern Recognition and Machine Learning. In-
formation Science and Statistics. Springer. ISBN 9-780-387-31073-2. URL
https://books.google.co.uk/books?id=kTNoQgAACAAJ.

Blei, David M. and Jordan, Michael I. (2006). Variational inference for
dirichlet process mixtures. Bayesian analysis, 1(1) 121–144.

Breiman, Leo (2001). Random forests. Machine Learning, 45(1) 5–32. ISSN
1573-0565. URL https://doi.org/10.1023/A:1010933404324.

Delalleau, Olivier, Courville, Aaron and Bengio, Yoshua (2018). Ef-
ficient EM Training of Gaussian Mixtures with Missing Data. URL
https://arxiv.org/pdf/1209.0521.pdf.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum Like-
lihood from Incomplete Data via the EM Algorithm. Journal of the Royal
Statistical Society. Series B (Methodological), 39(1) 1–38. URL http:

//www.jstor.org/stable/2984875?seq=1#page_scan_tab_contents.

Faes, C., Ormerod, J. T. and Wand, M. P. (2010). Variational Bayesian
Inference for Parametric and Nonparametric Regression with Missing
Data. URL http://www.maths.usyd.edu.au/u/jormerod/JTOpapers/

faespap.pdf.

Fisher, Ronald A. (1963). The use of multiple measurement in
taxonomic problems. Annals of Eugenics, 7(2) 179–188. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.

1936.tb02137.x.

66

http://projecteuclid.org/euclid.aoms/1177697196
http://projecteuclid.org/euclid.aoms/1177697196
https://books.google.co.uk/books?id=kTNoQgAACAAJ
https://doi.org/10.1023/A:1010933404324
https://arxiv.org/pdf/1209.0521.pdf
http://www.jstor.org/stable/2984875?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2984875?seq=1#page_scan_tab_contents
http://www.maths.usyd.edu.au/u/jormerod/JTOpapers/faespap.pdf
http://www.maths.usyd.edu.au/u/jormerod/JTOpapers/faespap.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x

Ghahramani, Zoubin and Jordan, Michael I. (1996).
Supervised learning from incomplete data via an
EM approach. URL http://papers.nips.cc/paper/

767-supervised-learning-from-incomplete-data-via-an-em-approach.

pdf.

Harrison, David and Rubinfeld, Daniel (1978). Hedonic housing prices
and the demand for clean air. In Journal of Environmental Economics and
Management, volume 5, 81–102.

Hernández-Lobato, José Miguel, Houlsby, Neil and Ghahramani,
Zoubin (2014). Probabilistic matrix factorization with non-random miss-
ing data. In Proceedings of the 31st International Conference on Inter-
national Conference on Machine Learning - Volume 32, ICML’14, II–
1512–II–1520. JMLR.org. URL http://dl.acm.org/citation.cfm?id=

3044805.3045061.

Jordan, M. I. and Mitchell, T. M. (2015). Machine learning: Trends,
perspectives, and prospects. Science, 349(6245) 255–260. ISSN 0036-8075.
URL http://science.sciencemag.org/content/349/6245/255.

Little, Roderick J. A. and Rubin, Donald B. (2002). Statistical Analysis
with Missing Data. John Wiley & Sons, Inc., 2nd edition. ISBN 978-0-
471-18386-0.

MacKay, David J.C. (2003). Information Theory, Inference and Learning
Algorithms. Cambridge University Press. ISBN 978-0-521-64298-9. URL
https://books.google.co.uk/books?id=AKuMj4PN_EMC.

Marlin, Benjamin M., Zemel, Richard S., Roweis, Sam T. and Slaney,
Malcolm (2012). Collaborative filtering and the missing at random as-
sumption. URL http://arxiv.org/abs/1206.5267.

Melchior, Peter and Goulding, Andy D (2016). Filling the gaps: Gaus-
sian mixture models from noisy, truncated or incomplete samples. URL
https://arxiv.org/pdf/1611.05806.pdf.

Murphy, Kevin P (2007). Conjugate Bayesian analysis of the Gaus-
sian distribution. URL https://www.cs.ubc.ca/~murphyk/Papers/

bayesGauss.pdf.

Orchard, Terence and Woodbury, Max A (1976). A missing information
principle: Theory and applications. URL https://projecteuclid.org/

download/pdf_1/euclid.bsmsp/1200514117.

67

http://papers.nips.cc/paper/767-supervised-learning-from-incomplete-data-via-an-em-approach.pdf
http://papers.nips.cc/paper/767-supervised-learning-from-incomplete-data-via-an-em-approach.pdf
http://papers.nips.cc/paper/767-supervised-learning-from-incomplete-data-via-an-em-approach.pdf
http://dl.acm.org/citation.cfm?id=3044805.3045061
http://dl.acm.org/citation.cfm?id=3044805.3045061
http://science.sciencemag.org/content/349/6245/255
https://books.google.co.uk/books?id=AKuMj4PN_EMC
http://arxiv.org/abs/1206.5267
https://arxiv.org/pdf/1611.05806.pdf
https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
https://projecteuclid.org/download/pdf_1/euclid.bsmsp/1200514117
https://projecteuclid.org/download/pdf_1/euclid.bsmsp/1200514117

Rasmussen, Carl Edward (2000). The infinite gaussian mixture model. In
Advances in neural information processing systems, 554–560.

Ricci, Francesco, Rokach, Lior and Shapira, Bracha (2011). In-
troduction to Recommender Systems Handbook, 1–35. Springer US,
Boston, MA. ISBN 978-0-387-85820-3. URL https://doi.org/10.1007/

978-0-387-85820-3_1.

Rubin, Donald B (1987). Multiple imputation for nonresponse in surveys.
John Wiley & Sons, New York. ISBN 978-0-471-08705-2.

Rubin, Donald B. (1996). Multiple imputation after 18+ years. Journal of
the American Statistical Association, 91(434) 473–489. ISSN 0162-1459.
URL http://www.jstor.org/stable/2291635.

Smola, Alex J., Vishwanathan, S. V. N. and Hofmann,
Thomas (2005). Kernel Methods for Missing Variables. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

221.8829&rep=rep1&type=pdf#page=334.

Städler, Nicolas, Stekhoven, Daniel and Bühlmann, Peter (2014).
Pattern alternating maximization algorithm for missing data in high-
dimensional problems. In Journal of Machine Learning Research, vol-
ume 15, 1903–1928.

Steinruecken, Christian and Iwata, Tomoharu (2013). Advanced sam-
pling. URL http://www.inference.org.uk/tcs27/talks/sampling.

html.

Stekhoven, Daniel J. (2016). Nonparametric missing value imputation us-
ing random forest. URL https://cran.r-project.org/web/packages/

missForest/missForest.pdf.

Stekhoven, Daniel J. and Bühlmann, Peter (2012). MissForest – non-
parametric missing value imputation for mixed-type data. Bioinformatics,
28(1) 112–118. URL http://dx.doi.org/10.1093/bioinformatics/

btr597.

Sundberg, Rolf (1974). Maximum likelihood theory for incomplete data
from an exponential family. Scandinavian Journal of Statistics, 1(2) 49–
58. URL https://www.jstor.org/stable/4615553.

Troyanskaya, Olga, Cantor, Michael, Sherlock, Gavin, Brown, Pat,
Hastie, Trevor, Tibshirani, Robert, Botstein, David and Altman,
Russ B (2001). Missing value estimation methods for dna microarrays.
Bioinformatics, 17(6) 520–525.

68

https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1007/978-0-387-85820-3_1
http://www.jstor.org/stable/2291635
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.8829&rep=rep1&type=pdf#page=334
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.8829&rep=rep1&type=pdf#page=334
http://www.inference.org.uk/tcs27/talks/sampling.html
http://www.inference.org.uk/tcs27/talks/sampling.html
https://cran.r-project.org/web/packages/missForest/missForest.pdf
https://cran.r-project.org/web/packages/missForest/missForest.pdf
http://dx.doi.org/10.1093/bioinformatics/btr597
http://dx.doi.org/10.1093/bioinformatics/btr597
https://www.jstor.org/stable/4615553

Van Buuren, Stef and Groothuis-Oudshoorn, Karin (2011). MICE:
Multivariate Imputation by Chained Equations in R. Journal of Statistical
Software, 45.

Van Buuren, Stef and Oudshoorn, Karin (1999). Flexible multivariate
imputation by MICE. Technical Report PG/VGZ/99.054, TNO Preven-
tion and Health.

Williams, Christopher K. I. and Nash, Charlie (2018). Autoencoders and
probabilistic inference with missing data: An exact solution for the factor
analysis case. URL https://arxiv.org/pdf/1801.03851.pdf.

69

https://arxiv.org/pdf/1801.03851.pdf

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Background
	Probability Theory
	Probability density and mass functions

	Machine Learning and Inference
	Learning as inference
	Graphical models
	Mixture models
	MAP estimation
	Expectation maximisation
	Variational Bayes

	Missing Data
	Missing data taxonomy
	Handling missing data

	Related Work
	Methods for learning despite missing data
	Imputation methods

	Design and Implementation
	Overview of AutoImpute
	Features
	User interface
	Software engineering details

	Mean Imputation
	Single Gaussian
	EM for MLE
	EM for MAP estimation
	Bayesian inference

	Gaussian Mixture Model
	Dirichlet Process
	Bayesian Model Comparison

	Evaluation
	Simple Examples
	Model Comparison
	Effect of Missing Data Percentage
	Sampling Illustration
	Comparison with MissForest

	Summary and Conclusions
	Future Work

	Notation
	Important Probability Distributions
	Gaussian
	Categorical
	Wishart
	Inverse Wishart
	Dirichlet

	Testing
	Mean imputation
	Dirichlet process
	Single Gaussian
	Guassian Mixture Model

