
Improving PPM with dynamic parameter updates

Christian Steinruecken, Zoubin Ghahramani, David MacKay

Department of Engineering, University of Cambridge

Abstract

This article makes several improvements to the classic PPM algorithm, resulting in a

new algorithm with superior compression effectiveness on human text. The key differences

of our algorithm to classic PPM are that (A) rather than the original escape mechanism,

we use a generalised blending method with explicit hyper-parameters that control the way

symbol counts are combined to form predictions; (B) different hyper-parameters are used for

classes of different contexts; and (C) these hyper-parameters are updated dynamically using

gradient information.

The resulting algorithm (PPM-DP) compresses human text better than all currently pub-

lished variants of PPM, CTW, DMC, LZ, CSE and BWT, with runtime only slightly slower

than classic PPM.

1 Introduction

The classic PPM algorithm by Cleary and Witten (1984) compresses sequences of symbols one

symbol at a time, by gradually learning context-dependent conditional probability distributions.

At the heart of every PPM-like algorithm is a data structure that stores symbol occurrence

counts for each context, in a way that allows these counts to be accessed efficiently to compute

the conditional symbol distributions. The primary difference between different variants of PPM

is the way these counts are updated and combined to form predictions: these two details jointly

define the probabilistic model that determines the algorithm’s compression effectiveness.1

This paper gives an explicit form of the probabilistic model of the classic PPM algorithm,

and then proposes several modifications, each of which increase the compression effectiveness

on human text. The runtime costs of this new method are comparable to those of other PPM

variants, and none of our proposed changes increases the memory requirements of the algorithm.

The resulting finite-depth algorithm (PPM-DP) compresses human text better than any

published PPM-variant, including Charles Bloom’s PPMZ (Bloom 1998) and Dmitry Shkarin’s

PPMII (Shkarin 2001a, 2002). It also beats CTW (Willems et al. 1993, 1995; Willems 1998), BWT

(Burrows and Wheeler 1994; Seward 2010), DMC (Cormack 1993), CSE (Dubé and Beaudoin

2010), and LZMA (Pavlov 2003, 2011) on human text.

1Of course all compression algorithms define a probability distribution over the input objects they compress,
at least implicitly. Suppose that an algorithm C maps input sequences S to compressed output sequences C(S).
Then C’s implicit probability distribution PC over input sequences S is given by PC(S) = 1

Z
· 2−|C(S)|, where

|C(S)| is the length of the compressed output sequence, and Z is a constant that normalises the probabilities to
unity.

1



2 Background

PPM-like algorithms use arithmetic coding to compress and decompress sequences one symbol

at a time, using predictive probability distributions P (xn | x1 ... xn−1) that depend on the pre-

ceding symbols. Each time a symbol is encoded or decoded, the algorithm updates its internal

model to improve the symbol predictions for the remainder of the sequence.

A characteristic feature of PPM algorithms is that these predictive symbol distributions are

computed hierarchically from context-dependent symbol occurrence counts M, which are col-

lected from the input sequence during compression / decompression. These counts are collected

separately for different contexts, where the context of a symbol (at a given position n) is the se-

quence of symbols immediately preceding it (or a finite suffix thereof). For example, the length-3

context of symbol xn is the sequence (xn−3, xn−2, xn−1). All PPM variants use a designated data

structure (such as a trie) to be able to access these counts quickly. Finite-depth variants of PPM

consider contexts up to some maximum length Dmax.

Let X denote the alphabet of input symbols (possibly including a special EOF symbol for

marking the end of the sequence). For any given context s, letMs(x) denote how often a given

symbol x was counted, and let |Ms| denote the total number of symbols counted. It is important

to note that the quantityMs(x) is not generally equal to the number of times the subsequence

(s :: x) occurred in the sequence observed so far: the way symbols are counted and how their

counts are combined to form predictions vary among PPM algorithms, and implicitly define the

algorithm’s probabilistic model.2

This paper proposes several changes to the original PPM algorithm, which are summarised

as follows:

• Replacing the escape mechanism with blending of predictions from all available context

depths. Blending was investigated in detail by Bunton (1997). We describe a generalised

version of blending in section 4, in which a small number of hyper-parameters control the

blending of predictions from different-depth contexts.

• Choosing separate hyper-parameters for different classes of contexts, grouped together

by the number of unique symbols observed in the context, and by context-depth. This

technique is described in section 5.

• Adjusting the hyper-parameters of each context class during compression, using the ana-

lytically computed gradients of the log probability of the data. Such a technique was used

in the Deplump compressor by Bartlett and Wood (2011). This technique is described in

section 6.

The conjunction of these techniques define a new algorithm named PPM-DP, whose compression

effectiveness is demonstrated in section 7.

We begin by giving an explicit (and generalised) form of the probabilistic model of Cleary

and Witten’s PPM, including symbol exclusions and update exclusions by Moffat (1990).

2The most common rule for counting symbols is the “update exclusions” rule of Moffat (1990), which states
that symbols are always counted in the longest matching context, but in shorter contexts are only counted once
for every unique longer context. This rule is used in this paper.

2



3 The probabilistic model of PPM’s escape mechanism

The original PPM algorithm by Cleary and Witten (1984) formed predictive symbol distributions

using a method called the escape mechanism. The idea behind this mechanism is to predict the

next symbol using only the count in the longest matching context if the symbol was observed

at least once, and to back off to a shorter context otherwise.

The probabilistic model induced by this escape mechanism is stated below. We generalise

the original escape mechanism slightly to include two hyper-parameters: a strength parameter

α, and a discount parameter β. Some classic PPM variants correspond to particular settings

of these hyper-parameters. For example, α=1 and β=0 recovers Cleary and Witten’s PPMA,

while setting α=0 and β= 1
2 produces Howard’s PPMD (Howard 1993). The permitted range

of β is the interval [0, 1], and α must take a value between −β and +∞.

PPM’s predictive distribution over the next symbol (assuming that all countsMs are up to

date) can then be recursively expressed as follows:

P
s\R(x) :=























Ms(x)− β

T
\R
s + α

if x ∈ Ms and x 6∈ R

U
\R
s · β + α

T
\R
s + α

· Psuf(s)\Ms
(x) otherwise.

(1)

where the recursion starts with s being the longest supported context, and R, the set of excluded

symbols, is initially empty. The function suf(s) denotes the longest proper suffix of s. For

example, suf(TEA)=EA, and suf(T)=ε, where ε is the empty sequence. T
\R
s is the total number

of symbol occurrences inMs (including repetitions) after excluding all symbols in R:

T
\R
s :=

∑

x∈Ms

Ms(x) · 1[x 6∈ R] (2)

and U
\R
s is the number of unique symbols inMs that do not occur in R:

U
\R
s :=

∑

x∈X

1[x ∈ Ms] · 1[x 6∈ R]. (3)

Pε is the top-level (unigram) distribution, and Psuf(ε) is defined to be uniform (or some other

suitable base distribution over the input alphabet X ). P
s\R denotes the adaptive symbol distri-

bution for context s that excludes all symbols in set R. (Note that the adaptive distributions Ps

and summary multisetsMs are changing objects whose predictions for symbol xN+1 depend on

the preceding symbols x1 ... xN ; this conditional dependence is left implicit for ease of notation.)

The escape mechanism appeals because of its simplicity and computational convenience, but

its probabilistic model is somewhat difficult to reason about. Also, its compression effectiveness

on human text is inferior to the blending method described in section 4; see e.g. the work by

Bunton (1997) for comparisons of these two methods.

4 Blending

The classic PPM algorithm can be modified to use other forms of probability estimation, dif-

ferent from the original “escape mechanism” and its derivatives. The approach taken in this

paper combines the observations from all context depths, blending their probability distributions

3



(rather than switching between them and applying exclusion rules). In particular, we use the

following construction:

Ps(x) :=
Ms(x)− β

|Ms|+ α
· 1[x ∈ Ms] +

Usβ + α

|Ms|+ α
·











1

|X |
if s = ε

Psuf(s)(x) otherwise,

(4)

where 1[x ∈ Ms] equals 1 if symbol x was observed at least once in context s (and 0 otherwise).

Ms is the multiset of symbol counts for context s, and Us denotes the number of unique symbols

inMs:

Us =
∑

x∈X

1[x ∈ Ms]. (5)

Equation (4) defines a probabilistic model that corresponds to a generalised form of “interpolated

Kneser–Ney smoothing” (Chen and Goodman 1998) with a uniform base distribution. This

model can also be considered an approximate sequential construction of a Pitman–Yor process

(Teh 2006).

A blending PPM can be implemented straightforwardly by replacing PPM’s escape mecha-

nism with equation (4). There are no ESC symbols when blending is used: symbol probabilities

are always calculated by visiting contexts of all depths.

Computing the cumulative symbol distributions of a blending PPM (as required for arith-

metic coding) is computationally slightly more expensive compared to a PPM that uses the

escape mechanism. However, the computational overhead is not prohibitive, and there may be

several approaches for speeding up this computation, e.g. careful caching, or using approxima-

tions to blending like PPMII’s information inheritance mechanism (Shkarin 2001a).

The predictive symbol distributions of a generalised blending PPM, as defined in equation (4),

depend on two hyper-parameters α and β. It is worth pointing out that the settings of these

hyper-parameters strongly affect the compression effectiveness of the model. How these hyper-

parameters should be set can be determined empirically, or using an optimisation algorithm; for

example, for English text, setting α = 1
2 and β = 3

4 seems to work reasonably well (Steinruecken

2014).

We remark that although equation (4) uses the same two hyper-parameters as in equation (1),

they affect compression effectiveness slightly differently in the two models; settings of α and β

that yield good compression with the escape mechanism will not work well with blending, and

vice versa.

5 Distinguishing different classes of context

Most PPM algorithms use the same parameter values for all contexts, i.e. one (often hard-wired)

pair of hyper-parameters that govern the predictions for all contexts. One side-effect of this

practice is, for example, the well-known problem that increasing the maximum context depth

Dmax can worsen (rather than improve) compression effectiveness. This same problem limits

the effectiveness of unbounded depth PPM variants such as PPM*. Luckily, it turns out that

this problem is easy to fix.

Instead of setting these hyper-parameters to fixed values that are shared by all contexts, we

recommend setting the hyper-parameters differently for different classes of context. In particu-

lar, we recommend grouping contexts into classes based on their depth in the context tree (i.e.

4



the context length |s|), and based on their fanout (the number of unique symbols Us observed in

the context). Each such group of contexts then shares one pair of hyper-parameters (αfd, βfd),

where d is the context’s depth and f the context’s fanout.3

The predictive distributions (4) remain the same, except that each instance of α and β is

now looked up in a matrix of F ×D entries. Only D different depths and F different fanouts

are distinguished: for all contexts whose depth d exceeds D, the parameter value of the largest

distinguished depth is used. The same rule applies for contexts whose fanout is larger than F .

We write α and β for the two (F ×D)-sized matrices of parameter values. For good results on

human text, in our experience, F should be at least 5, and D should be between 7 and Dmax.

A key remaining question is of course how all these hyper-parameters should be set. If it was

difficult to find good settings for a single pair of hyper-parameters, then setting F ×D pairs of

hyper-parameters might be even more challenging. In section 6, we address this problem using

analytically derived gradients of the symbol distribution (with respect to the hyper-parameters).

Historical notes. The idea of using depth-dependent discount parameters may have orig-

inated with Chen and Goodman’s versions of Kneser–Ney smoothing, in particular the “inter-

polated Kneser–Ney” method from section 4.1.6 of their technical report (Chen and Goodman

1998). Depth-dependent discount parameters are also used in the unbounded-depth PPM-variant

named “Deplump” (Gasthaus et al. 2010; Bartlett and Wood 2011), and in the Sequence Mem-

oizer of Wood et al. (2009) on which the Deplump compressor is based. Fanout-dependent

parameters appear in section 4.1.7 of Chen and Goodman’s report (Chen and Goodman 1998),

and appear to be used (at least implicitly) in PPMII by Shkarin (2001a).

6 Setting the hyper-parameters

For any given input sequence x1 ... xN , the optimal settings of α and β are those that minimise

log2 1/P (x1 ... xN |α,β), the compressed output length. To find these settings, it is helpful to

obtain analytic gradients of the output length with respect to the hyper-parameters.

The gradients of the output length can be computed additively from the gradients of the

conditional symbol distributions:

∇ log2
1

P (x1 ... xN )
=

N
∑

n=1

∇ log2
1

P (xn | x1 ... xn−1)
(6)

where P (xn | x1 ... xn−1) was defined in (4). These gradients can be computed efficiently, with

not much more effort than required for computing the probability mass.

6.1 Gradients

Writing Ps as an abbreviation for Ps(xN+1 | x1 ... xN ,α,β), and switching to natural logarithms,
the gradients of the conditional symbol probabilities with respect to a discount parameter βfd
are:

∂ logPs

∂βfd

=
1

Ps

(

−1

|Ms|+ αfd

+
Us

|Ms|+ αfd

Psuf(s) +
αfd + Usβfd

|Ms|+ αfd

·
∂Psuf(s)

∂βfd

)

(7)

3Grouping contexts based on depth is sufficient for avoiding the problem of deep contexts being used inef-
fectively (if the hyper-parameters are set carefully). Making context groups depend also on node fanout further
improves compression.

5



And the gradients with respect to a strength parameter αfd are:

∂ logPs

∂αfd

=
1

Ps

(

βfd −Ms (x)

(|Ms|+ αfd)
2 +

|Ms| − Usβfd

(|Ms|+ αfd)
2 · Psuf(s) +

αfd + Usβfd

|Ms|+ αfd

·
∂Psuf(s)

∂αfd

)

. (8)

The quantitiesMs(x), |Ms| and Us are defined as in equation (4). These gradients are helpful

in two ways: firstly, they can be used to update the hyper-parameters during compression, and

secondly, they can be used in an offline search to find the optimal parameter settings for a given

sequence. These procedures will be described in sections 6.2 and 6.3.

6.2 Dynamic parameter updates

As the optimal settings of the hyper-parameters α and β depend on the sequence being com-

pressed, it is attractive to adjust them adaptively during compression, rather than setting them

to fixed values.

One simple way of implementing such an adaptive mechanism is to make small adjustments

to the α and β parameter matrices each time a symbol is learned, just before the algorithm

regularly updates the symbol countsM. The adjustments add the gradients (7) and (8), scaled

by a step size δ, to the hyper-parameters:

αfd ← αfd + δ ·
∂ log Ps

∂αfd

and βfd ← βfd + δ ·
∂ logPs

∂βfd
. (9)

In our implementation, we used a step size of δ=0.003. The implementation must ensure that

each modified parameter value stays within its permitted range, i.e. βfd ∈ [0, 1] and αfd ∈

[−βfd,+∞).

6.3 Offline optimisation

Optimal settings of the hyper-parameters α,β for a given sequence x1 ... xN can be found

using e.g. a conjugate gradient optimiser. Offline optimisation is a slow procedure, as it requires

compressing the chosen file many times. The output of the offline optimisation is parameter

values that are optimal for the chosen file. These values will clearly not be optimal for other

files, but may work reasonably well on files that are similar to the file they were optimised for.

For this reason we’ve used parameters that were optimised offline on a file from the Canterbury

corpus to initialise the α and β hyper-parameters in PPM-DP (which uses dynamic parameter

updates).

7 Results

The compression effectiveness of our algorithm (PPM-DP), as evaluated on the files of the Can-

terbury and Calgary corpora, is presented in Table 1. PPM-DP (depth 8) compresses human

text better than PPMII, PPMZ, CTW, CSE, LZMA, bzip2 and gzip. The Dmax = 16 variant of

PPM-DP compresses even better. On non-text data (files kennedy.xls, ptt5, sum, geo, obj1 and

obj2), LZMA has the strongest compression effectiveness. More results can be found at http://

inference.org.uk/compression/ppm-dp/.

6

http://inference.org.uk/compression/ppm-dp/
http://inference.org.uk/compression/ppm-dp/


Results gzip LZMA bzip2 CSE CTW PPMZ PPMII N8 N8+ N16+

alice29.txt* 2.850 2.551 2.272 2.192 2.075 2.059 2.033 2.019 2.018 2.015

asyoulik.txt 3.120 2.848 2.529 2.493 2.322 2.309 2.308 2.289 2.284 2.280

cp.html 2.593 2.478 2.479 2.555 2.307 2.158 2.139 2.140 2.121 2.113

fields.c 2.244 2.152 2.180 2.276 1.990 1.896 1.845 1.845 1.820 1.799

grammar.lsp 2.653 2.709 2.758 2.750 2.384 2.300 2.268 2.221 2.210 2.199

lcet10.txt 2.707 2.233 2.019 1.928 1.832 1.794 1.791 1.787 1.783 1.773

plrabn12.txt 3.225 2.746 2.417 2.283 2.185 2.194 2.202 2.178 2.172 2.171

xargs.1 3.308 3.369 3.335 3.494 2.962 2.850 2.852 2.782 2.775 2.771

kennedy.xls 1.629 0.409 1.012 0.891 1.009 1.373 1.168 1.576 1.547 1.519

ptt5 / pic 0.816 0.618 0.776 0.772 0.796 0.754 0.757 0.777 0.767 0.768

sum 2.671 1.982 2.701 3.024 2.571 2.538 2.327 2.525 2.448 2.399

bib 2.509 2.199 1.975 1.975 1.833 1.718 1.726 1.728 1.715 1.697

book1 3.250 2.717 2.420 2.268 2.180 2.188 2.185 2.167 2.165 2.166

book2 2.700 2.224 2.062 1.977 1.891 1.839 1.827 1.822 1.819 1.809

news 3.063 2.521 2.516 2.525 2.350 2.205 2.188 2.215 2.196 2.177

paper1 2.789 2.598 2.492 2.540 2.291 2.212 2.190 2.186 2.179 2.170

paper2 2.887 2.655 2.437 2.412 2.229 2.185 2.173 2.164 2.162 2.158

progc 2.677 2.532 2.533 2.604 2.337 2.257 2.198 2.218 2.207 2.192

procl 1.804 1.666 1.740 1.712 1.647 1.447 1.437 1.487 1.459 1.415

progp 1.811 1.671 1.735 1.778 1.679 1.449 1.445 1.544 1.513 1.432

trans 1.610 1.420 1.528 1.598 1.443 1.214 1.222 1.301 1.241 1.195

geo 5.345 4.185 4.447 5.354 4.532 4.578 4.317 4.571 4.383 4.379

obj1 3.837 3.506 4.013 4.462 3.721 3.667 3.506 3.658 3.577 3.574

obj2 2.628 1.991 2.478 2.711 2.398 2.241 2.160 2.259 2.213 2.173

Table 1: Compression rates of selected compression algorithms on the files of the Canterbury
and Calgary corpora. The results are shown in output bits per input byte, with winning entries
highlighted in bold. Non-text files are separated from text files with a dotted line.

Our algorithms: N8, N8+ and N16+ are variants of PPM-DP: N8+ uses a maximum context
depth of Dmax=8, and 12F × 7D separate parameter pairs. N16+ uses Dmax=16 and 10F × 12D

parameter pairs. N8+ and N16+ use dynamic updates as described in section 6.2, and N8 has no
dynamic updates. The initial settings of the hyper-parameters were chosen based on an offline
optimisation for file alice29.txt, and were hard-wired into the algorithm.

Other algorithms: gzip (Gailly and Adler 1992) uses a variant of the LZ77 algorithm (Ziv
and Lempel 1977), bzip2 (Seward 2010) is a compressor based on the Burrows–Wheeler trans-
form (Burrows and Wheeler 1994), LZMA is an algorithm by Pavlov (Pavlov 2011), CTW is the
reference implementation of “context tree weighting” by Willems et al. (1993), CSE is an imple-
mentation of “compression by substring enumeration” by Dubé and Beaudoin (2010), PPMZ is
the PPM variant of Bloom (1998), PPMII is the official implementation of the (depth 16) PPM
variant by Shkarin (2001a).

7



8 Discussion

We proposed a novel data compression algorithm based on the PPM algorithm by Cleary and

Witten (1984), taking inspiration from the work on Deplump (Gasthaus and Teh 2010; Bartlett

and Wood 2011) and PPMII (Shkarin 2001a, 2002), and insights from Chen and Goodman (1998)

and Bunton (1997).

PPM-DP’s runtime is comparable to (but slightly slower than) that of other PPM algorithms.

Our algorithm uses the same information as other finite-depth PPM implementations (a trie data

structure with symbol counts), and therefore requires exactly the same amount of memory.

Limitations. The use of blending and dynamic parameter updates may slow down the algo-

rithm slightly, adding a small (constant) overhead per symbol. In our current implementation,

we made no attempts to take computational shortcuts (such as those in Shkarin’s PPMII source

code), but of course such optimisations can and should be made. Our implementation used

floating point representation for the α and β hyper-parameters and their gradients, but faster

fixed-point arithmetic could be used instead. For example, one speed-up found in PPMII is the

“information inheritance” mechanism (Shkarin 2001a), which can be interpreted as a computa-

tionally fast approximation to the blending mechanism defined in equation (4). Of course, any

changes to the probabilistic model (even when intended as an approximation) will also change

the analytic form of the gradients. Such changes should therefore be made with caution.

Future directions. We think it will be beneficial to explore different ways of grouping or

disaggregating contexts into separate classes. It may be interesting to construct an unbounded

depth version of PPM-DP, which might improve compression effectiveness on large files. To

produce a highly efficient implementation of PPM-DP, it may be worthwhile incorporating some

of the computational techniques from Shkarin’s beautiful source code of PPMII (Shkarin 2006).

Finally, it could be beneficial to incorporate PPM-DP’s probabilistic model into multi-model

ensemble compressors such as PAQ (Mahoney 2000, 2002, 2005).

References

Bartlett, Nicholas and Wood, Frank (2011). Deplump for streaming data. In Proceedings

of the Data Compression Conference, (edited by James A. Storer and Michael W. Marcellin),

363–372. IEEE Computer Society. ISBN 978-1-61284-279-0. ISSN 1068-0314.

Bloom, Charles (1998). Solving the problems of context modelling. Informally published report.

URL http://cbloom.com/papers/ppmz.pdf.

Bunton, Suzanne (1997). Semantically motivated improvements for PPM variants. The Com-

puter Journal, 40(2) 76–93. ISSN 0010-4620.

Burrows, Michael andWheeler, David John (1994). A block-sorting lossless data compression

algorithm. Technical Report SRC Research Report 124, Digital Equipment Corporation, Palo

Alto, California.

Chen, Stanley F. and Goodman, Joshua (1998). An empirical study of smoothing techniques

for language modeling. Technical Report TR-10-98, Centre for Research in Computing Tech-

nology, Harvard University, Cambridge, Massachusetts, USA.

8

http://cbloom.com/papers/ppmz.pdf


Cleary, John Gerald and Witten, Ian Hugh (1984). Data compression using adaptive coding

and partial string matching. IEEE Transactions on Communications, 32(4) 396–402. ISSN

0090-6778.

Cormack, Gordon V. (1993). Dynamic Markov compression (dmc.c). A file compressor based

on the “dynamic Markov compression” algorithm by Cormack and Horspool (1987). Source

code. URL http://plg.uwaterloo.ca/~ftp/dmc/dmc.c.

Cormack, Gordon V. and Horspool, R. Nigel S. (1987). Data compression using dynamic

Markov modelling. The Computer Journal, 30(6) 541–550.

Dubé, Danny and Beaudoin, Vincent (2010). Lossless data compression via substring enumer-

ation. In Proceedings of the Data Compression Conference, (edited by James A. Storer and

Michael W. Marcellin), 229–238. IEEE Computer Society. ISBN 978-0-7695-3994-2. ISSN

1068-0314.

Gailly, Jean-loup and Adler, Mark (1992). gzip. An open source file compressor based on

the DEFLATE algorithm by Katz and Burg (1993). Source code. URL http://www.gnu.org/

software/gzip/.

Gasthaus, Jan and Teh, Yee Whye (2010). Improvements to the Sequence Memoizer. In Ad-

vances in Neural Information Processing Systems 23, (edited by J. Lafferty, C. K. I. Williams,

J. Shawe-Taylor, R. Zemel and A. Culotta), 685–693. ISBN 978-1-61782-380-0.

Gasthaus, Jan, Wood, Frank and Teh, Yee Whye (2010). Lossless compression based on the

Sequence Memoizer. In Proceedings of the Data Compression Conference, (edited by James A.

Storer and Michael W. Marcellin), 337–345. IEEE Computer Society. ISBN 978-0-7695-3994-2.

ISSN 1068-0314.

Howard, Paul Glor (1993). The Design and Analysis of Efficient Lossless Data Compression

Systems. Ph.D. thesis, Department of Computer Science, Brown University, Providence,

Rhode Island 02912, USA.

Katz, Phil (1993). APPNOTE.TXT — .ZIP file format specification, version 2.0. Distributed by

PKWARE Inc. (Milwaukee, Wisconsin, USA). Contains the first published description of the

DEFLATE algorithm developed by Katz and Burg (1993).

Katz, Phil and Burg, Steve (1993). PKZIP, version 2.04g. Software. Distributed by PKWARE

Inc. (Milwaukee, Wisconsin, USA). First implementation of the DEFLATE algorithm, de-

scribed by Katz (1993).

Mahoney, Matthew Vincent (2000). Fast text compression with neural networks. In Proceedings

of the Thirteenth International Florida Artificial Intelligence Research Society Conference

(FLAIRS 2000), (edited by James N. Etheredge and Bill Z. Manaris), 230–234. AAAI Press.

ISBN 978-1-57735-113-9.

Mahoney, Matthew Vincent (2002). The PAQ1 data compression program. Unpublished draft,

URL http://cs.fit.edu/~mmahoney/compression/paq1.pdf.

Mahoney, Matthew Vincent (2005). Adaptive weighing of context models for lossless data com-

pression. Technical Report CS-2005-16, Department of Computer Science, Florida Institute

of Technology, Melbourne, FL, USA.

9

http://plg.uwaterloo.ca/~ftp/dmc/dmc.c
http://www.gnu.org/software/gzip/
http://www.gnu.org/software/gzip/
http://cs.fit.edu/~mmahoney/compression/paq1.pdf


Moffat, Alistair (1990). Implementing the PPM data compression scheme. IEEE Transactions

on Communications, 38(11) 1917–1921. ISSN 0090-6778.

Pavlov, Igor (2003). 7-Zip, version 3.13. Source Code, first published version. URL http://

www.7-zip.org/.

Pavlov, Igor (2011). LZMA SDK. Source Code. URL http://www.7-zip.org/sdk.html.

Seward, Julian (2010). bzip2, version 1.0.6. A compressor based on the block-sorting transform

of Burrows and Wheeler (1994). Source code. URL http://www.bzip.org/.

Shkarin, Dmitry A. (2001a). Ïîâûøåíèå ý��åêòèâíîñòè àëãîðèòìà PPM (Improving the

efficiency of the PPM algorithm). Ïðîáëåìû Ïåðåäà÷è Èí�îðìàöèè (Problems of Informa-

tion Transmission), 37(3) 44–54. ISSN 0555-2923. For an English translation see Shkarin

(2001b).

Shkarin, Dmitry A. (2001b). Improving the efficiency of the PPM algorithm. Problems of

Information Transmission, 37(3) 226–235. ISSN 1608-3253. Translated from Russian (Shkarin

2001a). See also (Shkarin 2002).

Shkarin, Dmitry A. (2002). PPM: One step to practicality. In Proceedings of the Data Com-

pression Conference, (edited by James A. Storer and Martin Cohn), 202–211. IEEE Computer

Society. ISBN 978-0-7695-1477-2. ISSN 1068-0314.

Shkarin, Dmitry A. (2006). ppmdj. An implementation of PPMII by Shkarin (2001a). Source

code. URL http://www.compression.ru/ds/ppmdj.rar.

Steinruecken, Christian (2014). Lossless Data Compression. Ph.D. thesis, University of

Cambridge.

Teh, Yee Whye (2006). A Bayesian interpretation of interpolated Kneser–Ney. Technical Report

TRA2/06, School of Computing, National University of Singapore.

Willems, Frans M. J. (1998). The context-tree weighting method: Extensions. IEEE Transac-

tions on Information Theory, 44(2) 792–798. ISSN 0018-9448.

Willems, Frans M. J., Shtarkov, Yuri M. and Tjalkens, Tjalling J. (1993). Context tree

weighting: A sequential universal source coding procedure for FSMX sources. In International

Symposium on Information Theory, Proceedings, 59. IEEE. ISBN 978-0-7803-0878-7.

Willems, Frans M. J., Shtarkov, Yuri M. and Tjalkens, Tjalling J. (1995). The context-

tree weighting method: Basic properties. IEEE Transactions on Information Theory, 41(3)

753–664. ISSN 0018-9448.

Wood, Frank, Archambeau, Cédric, Gasthaus, Jan, James, Lancelot and Teh, Yee Whye

(2009). A stochastic memoizer for sequence data. In ICML ’09: Proceedings of the 26th An-

nual International Conference on Machine Learning, (edited by Léon Bottou and Michael L.

Littman), volume 382 of ACM International Conference Proceeding Series, 1129–1136. ISBN

978-1-60558-516-1.

Ziv, Jacob and Lempel, Abraham (1977). A universal algorithm for sequential data compres-

sion. IEEE Transactions on Information Theory, IT-23(3) 337–343. ISSN 0018-9448.

10

http://www.7-zip.org/
http://www.7-zip.org/
http://www.7-zip.org/sdk.html
http://www.bzip.org/
http://www.compression.ru/ds/ppmdj.rar

