
SAT-Solving: Performance Analysis of Survey

Propagation and DPLL

Christian Steinruecken

June 2007

Abstract

The Boolean Satisfiability Problem (SAT) belongs to the class of NP-complete prob-
lems, meaning that there is no known deterministic algorithm that can solve an arbitrary
problem instance in less than exponential time (parametrized on the length of the input).
There is great industrial demand for solving SAT, motivating the need for algorithms
which perform well.

I present a comparison of two approaches for solving SAT instances: DPLL (an exact
algorithm from classical computer science) and Survey Propagation (a probabilistic algo-
rithm from statistical physics). The two algorithms were compared on randomly generated
3-SAT problems with varying clause to variable ratios.

1 Introduction

Boolean Satisfiability (SAT) is a computer science problem on the satisfiability of logical
propositions with boolean variables. Given a logical proposition (e.g. A ∧ ¬B ∨ C), we
want to find an assignment of variables making this proposition true.

If such a satisfying assignment exists, the proposition is satisfiable (SAT), and other-
wise unsatisfiable (UNSAT).

Various algorithms have been developed to solve satisfiability problems, and these
can be roughly grouped into two kinds: exact methods, which are guaranteed to find the
correct answer (SAT or UNSAT), and approximate methods which do not offer any hard
guarantees on whether they will find an assignment or a refutation, and consequently have
a third possible return value, UNKNOWN.

Any exact method can be turned into an approximate method by imposing resource
limits (e.g. computation time, amount of memory, or number of executed instructions).
All known exact SAT solvers exhibit exponential time complexity on certain inputs; the
existence of a polynomial-time algorithm would decide the P = NP hypothesis [3].

1.1 Historical note on SAT

SAT was the first problem to be proved NP-complete (by Stephen Cook in a landmark
paper [2] that gained him the Turing Award in 1982), and ultimately caused the emergence
of complexity theory as a new academic field within computer science.

Due to its industrial applications (e.g. in circuit design, engineering and automated
planning tools) [6], there is a lot of practical interest in solving SAT.

1

1.2 Clause form

By convention, SAT problems are logical propositions specified in clause form, i.e. a
product (∧) of sums (∨) of literals, where

• a literal x±n is either a boolean variable or its negation

• a clause Cm is a disjunction (logical OR) of literals

• the product is a conjunction (logical AND) of all the clauses.

Examples

A boolean proposition in clause form might look like this:

{A,¬B} {B,¬C,D} {¬A}

This proposition is satisfiable if there is an assignment of truth values (true or false) to
the four variables A,B,C,D that satisfies all three clauses. A clause is satisfied if at least
one of its literals is true, e.g. {A,¬B} is true if either A 7→ true or B 7→ false (or both).

One solution to this problem is e.g. the assignment {A 7→ false, B 7→ false, D 7→ true}.
This valuation makes the formula true regardless what value is assigned to C.

Here is an example of a proposition which is unsatisfiable:

{¬G,H} {G} {¬H}

No matter what we assign to G and H, these clauses cannot be satisfied simultaneously.

Any propositional logic formula can be converted to clause form, though in certain
cases this may incur an exponential blow-up in formula size.

Formalisation

In general, a SAT problem with N variables and M clauses is specified by two sets X
(the set of variables xn) and P (the set of clauses Cm). A literal xsn is then described by
a variable xn ∈ X and a sign s ∈ {+,−}.

The set X+ is the set of all positive literals x+n , and X− the set of all negative literals
x−n . Each clause Cm ⊂ (X+ ∪X−) is simply a set of literals.

Example. The clauses {A,¬B} {B,¬C,D} {¬A} from above are specified as follows:

N = 4, X = {x1, x2, x3, x4}
M = 3, P = {C1, C2, C3}

where C1 = {x+1 , x
−
2 },

C2 = {x+2 , x
−
3 , x

+
4 },

C3 = {x−1 }

An assignment A is a set of mappings (xn 7→ t) from variables xn ∈ X to truth values
t ∈ {true, false}. The notation A(xi) denotes the truth value assigned to variable xi under
assignment A.

Given an assignment A, the set of clauses P evaluates to the truth value A(P) ∈
{true, false} as follows:

A(P) =
∧

1≤m≤M

∨

xs

i
∈Cm

A(xsi)

where A(x+
i
) = A(xi) and A(x−

i
) = ¬A(xi).

2

1.3 Structured versus random SAT problems

Real-life industrial SAT problems are typically big (involving thousands of variables and
clauses) and non-random, as they are commonly generated from digital circuit netlists or
automated planning tools [9]. One can imagine niche-solvers that optimise their compu-
tation by exploiting the structure found in SAT problems of their particular niche.

To compare the different SAT solving algorithms, I used randomly generated K-SAT
problems with a given clause to variable ratio α = M

N
, where N is the number of variables

and M the number of clauses (each having exactly K literals). The exact procedure is
described in section 3.2.

If we generate a lot of problem sets for some constant N and varying α, one can observe
that problems below a certain α value are easy to solve due to being underconstrained

(therefore easily satisfiable), whereas problems above a certain α threshold are easy to
solve due to being overconstrained (therefore easily refutable). The “middle region” of
α values (between 4.0 and 4.5) is the hard region, and thus particularly interesting for
testing the performance of SAT solving algorithms.

 0

 20

 40

 60

 80

 100

 2 2.5 3 3.5 4 4.5 5 5.5 6

S
A

T
 [

%
]

Clauses per Variable

Satisfiability of Random 3-SAT Problems

Percent satisfiable

2 Approaches to SAT solving

2.1 DPLL

One of the best known exact algorithms for solving SAT is the Davis-Putnam-Logemann-

Loveland (DPLL) method [5, 4].
The algorithm works by assigning values to boolean variables in turn, and backtracking

when it runs into a contradiction. The algorithm terminates with SAT when an assignment
is found, or with UNSAT when no backtrack alternatives are left (meaning that the input
clauses are unsatisfiable).
DPLL always terminates, reporting either a solution or a contradiction.

The most popular implementation of the DPLL algorithm is zChaff, which has some
additional performance tweaks from the Chaff algorithm [7] (a variant of DPLL).

2.2 GSAT and WalkSAT

GSAT and WalkSAT [8] are approximate SAT solvers, both belonging to a family of
methods employing local search strategies to solve the problem: the algorithm chooses
one variable at a time and flips it, until all clauses are satisfied. However, flipping a
variable typically satisfies some clauses, but is likely to break others. The art lies in
choosing the right variable. GSAT takes a greedy approach and chooses variables that
maximise the number of satisfied clauses.

3

WalkSAT instead includes a bit of randomness, allowing it to also flip variables which
are already considered in an optimal state (this gives WalkSAT a chance of escaping
from some local optima). Also, it only considers variables from unsatisfied clauses, which
further improves the speed of the algorithm.

Generally, both GSAT and WalkSAT can get stuck in local optima, which could pre-
vent them from finding a global solution. The algorithms therefore restart periodically
(i.e. discard and randomize the current assignments); if a satisfying assignment is found,
the algorithm terminates with SAT, otherwise it keeps running until it exceeded its number
of allowed iterations, after which it returns UNKNOWN.

2.3 Survey Propagation

Survey Propagation SAT solving [1] is a heuristic method introduced by A. Braunstein,
M. Mezard, and R. Zecchina in 2003.

The central part of this method is an iterative message passing algorithm (SP) which
computes surveys on a factor graph representation of the set of clauses. These surveys
are used in a second algorithm (SID) to fix an assignment for one variable at a time
until the surveys suggest no further improvement. At that point, a local search method
(e.g. WalkSAT) is invoked on the simplified subproblem.

Note that the naming is a bit confusing: “Survey Propagation” is strictly only the name
of the message passing algorithm, which forms part of (but is not identical to) the full
SAT solving procedure, which is outlined in Figure 1.

4

Construct Factor Graph

Randomize surveys

Run Survey Propagation

 unconverged

[trials left]

Surveys trivial?

converged

FAIL

[timeout]

 unconverged

[timeout]

Use surveys to

assign a variable

 no

Run WalkSAT

 yes

Simplify graph

Problem solved?

SAT

 success

FAIL

[walksat]

 fail

 no

 yes

UNSAT

 contradiction

Figure 1: Survey Inspired Decimation (SID)

5

2.3.1 Constructing the factor graph

The factor graph has nodes for each variable and each clause, and edges connecting each
variable node with the nodes of clauses it is contained in.

For example, the clause set

{A,B,C}1 {¬A,¬B,C}2 {¬A,B,¬C}3 {A,¬B,¬C}4

is represented by the following factor graph:

A

B

C

1

2

3

4

The boxes are function nodes representing clauses, and the circular nodes are variables.
Since literals are either negated or unnegated variables, there are two types of edges in the
graph. Dotted edges indicate that the variable occurs negated in the clause it is connected
to.

More formally, the factor graph can be specified exactly with an edge relation J ∈
([1..N] × [1..M] × {+1,−1}), which contains an element (n,m,±1) for each edge in the
graph, indicating a connection between variable xn and clause Cm, with the type of edge
(negated or unnegated).

A variable node nn and a clause node m are connected with an edge if and only if
x+n ∈ Cm or x−n ∈ Cm. For connected pairs (n,m) we can define Jn

m ∈ {+1,−1}, indicating
whether xn appears negated or unnegated in Cm:

Jn
m =

{

+1 when x+n ∈ Cm

−1 when x−n ∈ Cm.

2.3.2 SP Message Passing

Survey Propagation iteratively computes surveys ηm→n which are sent along the edges of
the graph.

6

For each variable node n, the following values are updated repeatedly:

Πu
n→m :=

1−
∏

b∈V u

m
(n)

(1− ηb→n)

∏

b∈V s

m
(n)

(1− ηb→n)

 (1)

Πs
n→m :=

1−
∏

b∈V s

m
(n)

(1− ηb→n)

∏

b∈V u

m
(n)

(1− ηb→n)

 (2)

Π0
n→m :=

∏

b∈V (n)\m

(1− ηb→n) (3)

ηm→n :=
∏

i∈V (m)\n

(

Πu
i→m

Πu
i→m

+Πs
i→m

+Π0
i→m

)

(4)

Here V (n) denotes the set of clause nodes neighbouring variable node n, and V (m) denotes
the set of variable nodes neighbouring clause nore m.

V s
m(n) denotes the set of variable nodes b ∈ V (m) with Jb

m = Jn
m (i.e. same edge type)

, and V u
m(n) denotes the set of variable nodes b ∈ V (m) with Jb

m 6= Jn
m (opposite edge

type).

This process continues until either the computation converges (i.e. the change between
successive updates drops smaller than some constant ε) or until a timeout is reached.

2.3.3 Survey Inspired Decimation

SID is a procedure that simplifies the SAT factor graph using Survey Propagation mes-
sages as a heuristic.

1. Construct the factor graph of the problem from its set of clauses.

2. Repeat

(a) Call Survey Propagation (SP) to compute surveys η. If SP doesn’t converge,
retry until a timeout is reached.

(b) If there are non-zero surveys, (η 6= 0):

i. Compute biases for each variable i, and sort them.

ii. Find the variable with highest bias, and assign it.

iii. Simplify the graph.

(c) Otherwise (if all surveys are zero), call WalkSAT and exit.

until the problem is solved or a contradiction is found.

7

2.4 Others

There are several other methods of solving SAT. For instance:

Truth Table Enumeration

The brute force way of solving SAT, TTE exhaustively enumerates all possible assignments
of the variables and checks whether any of them satisfies the set of clauses. It runs in
guaranteed exponential time O(2n) on all inputs.

Resolution

A method which finds and merges clauses with a common variable of opposite sign, thus
reducing the number of clauses and variables until either an empty clause is generated
(providing a refutation) no further reductions can be made (meaning that the result is
satisfiable).

Ordered binary decision digrams

OBDDs convert logical formulae to a unique and compact tree representation. The unique-
ness feature is its main strength, making it widely employed for model checking and logic
minimisation. A formula is satisfiable if and only if its OBDD is unequal to the node
representing false.

3 Setup

3.1 Implementations

To compare the DPLL and Survey Propagation SAT solvers, I downloaded reference im-
plementations for each and modified them to include (identical) time auditing mechanisms,
before compiling and linking them against the same system libraries.

I ran the resulting binaries on designated, identical 3-SAT problem sets, which were
randomly generated using the procedure outlined below.

3.2 Problem generator

To generate random K-SAT problem instances with M clauses and N variables, the
following method was used:

1. For n := 1 to N , allocate a new variable xn.

2. For m := 1 to M , generate clause Cm as follows:

(a) Initialise Cm := {}

(b) Repeat K times:

i. Pick a boolean variable xn uniformly from X \ Cm, i.e. the set of variables
not yet occurring in Cm.

ii. Choose a sign s ∈ {+,−} with probability 1
2 .

iii. Add the new literal xsn to the clause. Cm := Cm ∪ {xsn}

8

3.3 Comparison

I ran the solver binaries on the precomputed problem sets, recording the computation
time t and outcome o ∈ {SAT, UNSAT, UNKNOWN} for each instance, and these data
to plot graphs showing the relationships between t, α = M

N
and Pr(o = SAT) for each

algorithm.

4 Results

The following graphs show medians and quartiles of the performance of zChaff, WalkSAT
and Survey Propagation, computed with 170 problem samples for any given clause to
variable ratio α = M/N .

Each plots includes a graph showing the number of assignments found by the given
algorithm. The step size used for α was 0.05.

 0

 20

 40

 60

 80

 100

 2 2.5 3 3.5 4 4.5 5 5.5 6

S
A

T
 [

%
]

Clauses per Variable

Assignments found

0.01

0.1

1

10

100

 2 2.5 3 3.5 4 4.5 5 5.5 6

T
im

e
 [

s
]

Q3
median Q2

Q1

0.01

0.1

1

10

100

 2 2.5 3 3.5 4 4.5 5 5.5 6

T
im

e
 [

s
]

3-SAT, 220 variables (zChaff)

zchaff (x170)

Figure 2: The graph on top shows the performance of individual SAT instances as measured
by zChaff - each marked by a point in the graph.

The middle graph shows quartiles and median of the same data.

Finally, the bottom graph shows what proportion of problems the algorithm could satisfy for a
given value of α. Since Chaff / DPLL is an exact algorithm and was not time bounded in this
run, the data coincide with actual satisfiability (i.e. all counted negative samples were proved
UNSAT rather than left UNKNOWN.

 0

 20

 40

 60

 80

 100

 2 2.5 3 3.5 4 4.5 5 5.5 6

S
A

T
 [

%
]

Clauses per Variable

Assignments found

 0.01

 0.1

 1

 10

 2 2.5 3 3.5 4 4.5 5 5.5 6

T
im

e
 [

s
]

Q3
median Q2

Q1

 0.01

 0.1

 1

 10

 100

 2 2.5 3 3.5 4 4.5 5 5.5 6

T
im

e
 [

s
]

3-SAT, 220 variables (Survey Propagation)

sp (x170)

Figure 3: Survey Propagation’s performance on the exactly same problem set.

The bottom graph shows what proportion of problems Survey Propagation could find assign-
ments for, and note that this may be less than the number of assignments actually existing.

 0

 20

 40

 60

 80

 100

 2 2.5 3 3.5 4 4.5 5 5.5 6

S
A

T
 [

%
]

Clauses per Variable

Assignments found

0.0

0.1

1.0

10.0

 2 2.5 3 3.5 4 4.5 5 5.5 6

T
im

e
 [

s
]

Q3
median Q2

Q1

0.0

0.1

1.0

10.0

 2 2.5 3 3.5 4 4.5 5 5.5 6

T
im

e
 [

s
]

3-SAT, 220 variables (WalkSAT)

wsat (x170)

Figure 4: WalkSAT’s performance on the exactly same problem set.

 0.01

 0.1

 1

 10

 2 2.5 3 3.5 4 4.5 5 5.5 6

T
im

e
 [

s
]

Clauses per Variable

3-SAT, k3v220 variables

zChaff Q2
SP Q2

WSAT Q2

This graph shows the medians of all three algorithms (Chaff, SP and WSAT) in the
same coordinate system. Note that Survey Propagation’s line is interrupted where the
majority of samples terminated with UNKNOWN.

5 Conclusions

I compared the DPLL / Chaff and Survey Propagation algorithms using relatively small
SAT problems (involving no more than 300 variables); the problems were small enough
to allow each instance to be solved exactly (by finding an assignment or refutation), and
big enough to expose interesting differences between the algorithms.

In their original paper on Survey Propagation [1], the authors warn that, on small
problem instances, their algorithm often fails to converge. (They define a “small” problem
to be one which has approximately N ≈ 1000 variables).

My experiments confirm that there are convergence problems in the region where the
clause to variabe ratio α lies between 4.1 and 4.6. Only Chaff succeeds in this interval,
though at the expense of reaching its computation-time peak at α ≈ 4.25.

Most notably, however, SP is significantly better than both DPLL and WalkSAT on
problems where α ∈ [4.7, 5.5].

It is important to bear in mind that the performance properties of these algorithms on
small problems may well be different from their performance on bigger problems. Also,
this study gives little clue as to which algorithm wins on industrial problems, which are
likely to be structurally different from uniformly generated random SAT instances.

13

5.1 Further work

As already indicated above, it would be desirable to run these comparisons with much
bigger problem sets, and compare the performance as the number of variables increases.

It would also be interesting to test the algorithms on actual industrial problems, or
generate SAT problem sets that are deliberately less random, or incorporate different
kinds of structural constraints.

Also, it might be useful to benchmark Survey Propagation in more detail, e.g. audit
the time spent in SID and WalkSAT, and maybe collect and plot statistics about the
types of FAIL states SID returns.

Finally, using something other than WalkSAT as local search method in the decimation
process might give some more insights on how it impacts overall performance and much
credit should be attributed to the local search method compared to the time it takes for
SP to converge.

References

[1] Alfredo Braunstein, Marc Mézard, and Riccardo Zecchina. Survey Propagation: An
algorithm for satisfiability. Random Structures and Algorithms, 27(2):201–226, 2005.

[2] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of

the third annual ACM symposium on theory of computing, pages 151–158. ACM, 1971.

[3] Stephen A. Cook. The P versus NP problem. In The Millenium Prize Problem. Clay
Mathematical Institute, April 2000.

[4] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[5] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, July 1960.

[6] Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and Malay K. Ganai. Ro-
bust Boolean reasoning for equivalence checking and functional property verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
21(12):1377–1394, 2002.

[7] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: engineering an efficient SAT solver. In Proceedings of the 38th annual

Design Automation Conference, pages 530–535. ACM Press, 2001.

[8] Bart Selman, Henry A. Kautz, and Bram Cohen. Local search strategies for satisfia-
bility testing. In Michael Trick and David Stifler Johnson, editors, Proceedings of the

Second DIMACS Challenge on Cliques, Coloring, and Satisfiability, pages 521–532,
1993.

[9] Ji-Ae Shin and Ernest Davis. Processes and continuous change in a SAT-based planner.
Artificial Intelligence, 166(1-2):194–253, 2005.

14

	Introduction
	Historical note on SAT
	Clause form
	Structured versus random SAT problems

	Approaches to SAT solving
	DPLL
	GSAT and WalkSAT
	Survey Propagation
	Constructing the factor graph
	SP Message Passing
	Survey Inspired Decimation

	Others

	Setup
	Implementations
	Problem generator
	Comparison

	Results
	Conclusions
	Further work

