Use arrow keys, PgUp, PgDn
to move between slides, or press 'dot' to toggle the
toolbar.
Typing 'HELP' + return opens a help screen.
@misc{steinruecken2013c, title = {Probabilistic Data Structures and Algorithms}, author = {Christian Steinruecken and Alexandre K. W. Navarro}, year = {2014}, month = jan, url = {http://www.inference.phy.cam.ac.uk/tcs27/talks/probdata.html}, howpublished = {Slide presentation. CBL Lab, Engineering Department, University of Cambridge}, }
Non-chaotic | Chaotic | |
---|---|---|
Predictable | non-random | pseudo-random |
Unpredictable | weakly random | strongly random |
Position | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Value |
\(x\) | \(h(x)\) |
---|---|
Zoubin | 4 |
Carl | 2 |
Zoubin | 4 |
Richard | 3 |
Máté | 4 |
Zoubin | 4 |
Carl | 2 |
Bit array | ||
---|---|---|
Position | Value | Items mapped |
1 | 0 | |
2 | 1 | Carl |
3 | 1 | Richard |
4 | 1 | Zoubin, Máté |
5 | 0 |
item | hash | lead-0s |
---|
any bit | \( \sim \txtBern(\theta=\textstyle \frac12)\) |
# of 0s before first 1 | \( \sim \txtGeom(\theta=\textstyle \frac12)\) |
Algorithm | Encoding/decoding |
LT codes | \( \bigO{ K \mul \ln(\frac{K}{\delta}) } \) |
Solomon-Reed codes | \( \bigO{ K(N-K) \mul \log_2 N } \) |
Algorithm | Time |
Randomized Miller–Rabin | \(\bigO{\log^3 \hl{x}}\) |
Deterministic Miller–Rabin | \(\bigO{\log^5 \hl{x}}\) |
Adleman–Pomerance–Rumely | \(\bigO{(\log \hl{x})^{\bigO{\log\log\log \hl{x}}}}\) |
Lower bound on \(P(\text{final set is minimal})\) | |
---|---|
Single run | \( \frac{2}{n(n-1)} \) |
\(k\) runs | \(1 - \left( 1 -\frac{2}{n(n-1)} \right)^k\) |
Structure | Array-type | Hash fn's | Value-type |
---|---|---|---|
Hashtable | linear | 1 | pointer to linked list |
Linear counter | linear | 1 | single bit |
Bloom filter | linear | \(k\) | single bit |
Count-min sketch | 2-dim. | \(k\) | integer count |
yours :-) | ? | ? | ? |