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Lossless Data Compression

Christian Steinruecken

Abstract

This thesis makes several contributions to the field of data compression. Lossless data com-
pression algorithms shorten the description of input objects, such as sequences of text, in
a way that allows perfect recovery of the original object. Such algorithms exploit the fact
that input objects are not uniformly distributed: by allocating shorter descriptions to more
probable objects and longer descriptions to less probable objects, the expected length of the
compressed output can be made shorter than the object’s original description. Compression
algorithms can be designed to match almost any given probability distribution over input
objects.

This thesis employs probabilistic modelling, Bayesian inference, and arithmetic coding to
derive compression algorithms for a variety of applications, making the underlying probability
distributions explicit throughout. A general compression toolbox is described, consisting of
practical algorithms for compressing data distributed by various fundamental probability
distributions, and mechanisms for combining these algorithms in a principled way.

Building on the compression toolbox, new mathematical theory is introduced for compressing
objects with an underlying combinatorial structure, such as permutations, combinations, and
multisets. An example application is given that compresses unordered collections of strings,
even if the strings in the collection are individually incompressible.

For text compression, a novel unifying construction is developed for a family of context-
sensitive compression algorithms. Special cases of this family include the PPM algorithm
and the Sequence Memoizer, an unbounded depth hierarchical Pitman–Yor process model.
It is shown how these algorithms are related, what their probabilistic models are, and how
they produce fundamentally similar results. The work concludes with experimental results,
example applications, and a brief discussion on cost-sensitive compression and adversarial
sequences.
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Notation

∅ The empty set.

{a, b, c} The set of elements a, b and c.

{a :2, b :1} The multiset containing two occurrences of a, and one occurrence of
b. The same multiset could also be written {a, a, b}.

N The set of natural numbers {0, 1, 2, . . .}.

R The set of real numbers.

[a, b] The closed real interval from a to b. Formally, r is in the set [a, b]if
and only if r is in the set R and a ≤ r ≤ b.

[a, b) The semi-open interval of real numbers r satisfying a ≤ r < b.

(a, b] The semi-open interval of real numbers r satisfying a < r ≤ b.

(a, b) The open interval of real numbers r from a to b, satisfying a < r < b.

⌊x⌋ The largest integer smaller than or equal to x.

⌈x⌉ The smallest integer larger than or equal to x.

A Set or multiset variable.

A(x) Indicator function of set A, or multiplicity function of multiset A.
A(x) denotes how often x occurs in A. For sets, A(x) ∈ {0, 1}. For
multisets, A(x) ∈ N.

x ∈ A x is an element in set or multiset A. The statements x ∈ A and
A(x) 6= 0 are equivalent.

|A| Cardinality of set (or multiset) A. For finite A, the cardinality |A|
equals

∑

x∈AA(x).

A ∪ B Union of sets A and B, with the property that (A ∪ B) (x) =
max (A(x),B(x)).

A ⊎ B Multiset-union of A and B, with the property that (A ⊎ B) (x) =
A(x) + B(x). Also, |A ⊎ B| = |A|+ |B|.

A ∩ B Intersection of sets A and B, with the property that (A ∩ B) (x) =
min (A(x),B(x)).
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12 NOTATION

A \ B Set containing the elements of A but not the elements of B.

A× B Cartesian product of sets A and B, with the property that |A × B| =
|A| · |B|.

A → B Set of functions from A to B. Specifically, f is in the set (A → B)
if and only if for every a in A there exists a unique b in B such that
(a, b) ∈ f .

2A Powerset of A.

An n-dimensional vector space over A.

A∗ Union of all finite-dimensional vector spaces overA, i.e.A∗ =
⋃∞

n=1An.

A∞ Countably infinite-dimensional vector space over A.

x1 ... xN A sequence of N elements, shorthand for x1, x2, . . . , xN .

ε The empty sequence.

δx Dirac delta function at point x, with
∫

δx dx = 1.

1[ Q ] Indicator function. 1[ Q ] equals 1 when predicate Q is true, and 0
otherwise.

#[ Qk ]Kk=1 Counting function, pronounced “count Qk”. Equals the number of
times a predicate Qk is true for given boundary conditions. #[Qk]Kk=1

equals
∑K

k=1 1[Qk].

D A probability distribution or measure.

D(x) The probability mass of a value x under distribution D.

D(S) The total probability mass of a set S of outcomes. D(S) =
∑

x∈S D(x).

D\S Probability distribution D excluding elements in set S. For any x
with support in D, D\S(x) equals 0 if x ∈ S, and D(x) · (1−D(S))−1

otherwise.

DΣ Lower cumulative mass function of distribution D. An implicit total
ordering ⊏ is assumed. For any element x with support in D, DΣ(x)
equals

∑

y⊏x D(y).

D+
Σ Upper cumulative mass function of distribution D. For any element

x with support in D, D+
Σ(x) = DΣ(x) + D(x). Equivalently, D+

Σ(x) =
∑

y⊑x D(y).



NOTATION 13

KL(P ||Q) Kullback–Leibler divergence between distributions P and Q (Kullback
and Leibler, 1951).

For discrete P and Q, KL(P ||Q)
def
=

∑

x∈X
P (x) ln

P (x)

Q(x)
.

E
P
x [ fx ] The expected value of a quantity fx that depends on a P -distributed

variable x. For discrete P and x ∈ X , EP
x [fx]

def
=

∑

x∈X
P (x) · fx.

hP (x) The Shannon information content of a value x under probability dis-

tribution P , defined as hP (x)
def
= log2

1

P (x)
.

H(P ) The Shannon information entropy of a probability distribution P , de-

fined as H(P )
def
= E

P
x [hP (x)].

X ∼ D Random variable X, distributed according to distribution D.

Pr(X) The probability distribution of random variable X. If X ∼ D, then
Pr(X) = D.

Γ(x) Value of the Gamma function at point x ∈ R. The Gamma function
is defined as Γ(x) =

∫∞
0 wx−1ew dw, and satisfies Γ(x + 1) = x ·Γ(x).

C A code C that maps elements of a set X to finite sequences of some
finite alphabet A. C is a function in X → A∗. C(x) denotes the code
word assigned to element x, and |C(x)| its code word length.

iid Text abbreviation meaning “independent and identically distributed”.

EOF End-of-file symbol.

Bayes’ theorem

Pr(X | Y ) =
Pr(Y |X) · Pr(X)

Pr(Y )
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Chapter 1

Introduction

1.1 Codes and communication

The communication of large amounts of information has become a defining feature of our

civilisation. In our modern age, information is increasingly represented in a digital form, and

its transmission happens mainly electronically. With the rise of the Internet, the ability to

exchange data globally has come to an ever increasing proportion of the world population.

There are many ways of representing information digitally, and any particular choice of rep-

resentation is called a code. A code defines a mapping between a set of input objects X and

the set of sequences of symbols from a finite alphabet S. Codes can be designed to serve

particular purposes, for example:

• Standardising a way of communicating. Notable examples include the ASCII code (ASA,

1963), or the Unicode standard (Unicode, 1991).

• Encoding an object x in such a way that its output sequence s is robust to transmission

errors, with the goal that x can be reconstructed from s even when some of the output

sequence has been altered during transmission. These are error correcting codes.

• Producing a compact representation of an object x, minimising the length of the output

sequence. This is called data compression, and requires knowledge about the probability

distribution over input objects. The better the compressor’s assumed distribution fits

the actual distribution, the better the input objects can be compressed.

• Securing an object x against interception. This is called encryption, and it works by

making the decoding procedure depend on a secret without which decoding would be

impossible or computationally infeasible.

15
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Codes can be chained together such that the output of one code is the input to another code.

For example, an object x might first be compressed, then encrypted and finally secured against

transmission errors, combining three separate codes. Success stories where such combined

codes are used include communication with distant man-made objects, such as space satellites

or robots on other planets of our solar system.

Coding theory originated with the work of Claude Shannon (1948), which gives a formal way

of measuring information and uncertainty. Shannon’s work laid the foundations for error

correcting codes and data compression, and for encryption one year later. Among his results

is a proof that for any channel, there are codes that can achieve near error-free communication

over that channel. The availability of error-free communication is assumed throughout this

thesis.

1.2 Data compression

A data compression algorithm translates an input object to a compressed sequence of output

symbols, from which the original input can be recovered with a matching decompression

algorithm. Compressors (and their matching decompressors) are designed with the goal that

the compressed output is, on average, cheaper to store or transmit than the original input.

Most contemporary systems transmit information using a binary alphabet, such as {0, 1}.
When the transmission costs of a 0 or a 1 are equal, the task of data compression is identical

to the task of minimising the message length. (Compressing to output alphabets with unequal

transmission costs is discussed in chapter 8; everywhere else in this thesis, equal transmission

costs are assumed.)

Data compression algorithms exploit that the occurrence probability of equally sized input

objects is not uniform: by allocating shorter descriptions to probable objects and longer

descriptions to less probable objects, transmission cost can be saved on average. At least

implicitly, any compression algorithm necessarily makes assumptions about which inputs are

more probable than others. These assumptions can be expressed in the form of a probability

distribution over input objects, which is called the algorithm’s implicit probability distribution.

(Details are given in chapter 3.)

A lossless compression code is optimal for a given probability distribution if the expected

output length for a random input message is minimal. The theoretical limit of that minimum

is equal to the Shannon information entropy of the distribution over messages. There are

algorithms that can create near-optimal compression codes for nearly any given probability

distribution, getting within 2 bits of the theoretical limit. Examples of such methods in-

clude the Huffman algorithm (covered in section 2.1.1) and the family of arithmetic coding
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algorithms (covered in chapter 3).

This thesis advocates constructing compression algorithms directly from probabilistic models,

using arithmetic coding for the code generation. With a probabilistic model, all assumptions

and uncertainty about the input data are made explicit, making it easier to reason about the

properties of the resulting compressor. Furthermore, the law of inverse probability (Bayes’

theorem) allows probabilistic models to be combined in a principled and consistent way,

enabling the modular construction of compression algorithms from smaller components.

Lossless versus lossy compression

An important distinction is made between lossy and lossless compression methods:

1. Lossy compression preserves the important part of the original message, and discards

unimportant details. The foundations of lossy compression were laid in Shannon’s rate–

distortion theory (Shannon, 1948). Well-known examples of lossy compression include

perceptual coding such as the JPEG picture format (JPEG, 1992), which approximates

a digital photograph using a quantized discrete cosine transform; or the MP3 audio

format (MPEG, 1991; Brandenburg, 1999), which exploits psychoacoustic properties of

human hearing to reduce bandwidth for inaudible frequency bands. For data where an

approximate reconstruction is good enough, lossy compressors can achieve unrivalled

results. Lossy compression was motivated by e.g. Blasbalg and van Blerkom (1962) and

initially called “entropy reduction”.

2. Lossless compression preserves the original message in its entirety, allowing it to be

recovered exactly from the compressed output. This thesis focuses on lossless compres-

sion, although some of the structural compression methods introduced in later chapters

may have interpretations as lossy compressors.

Note that a lossless data compressor cannot make every possible input string shorter – if

such an algorithm existed, its recursive application could reduce every input to length zero,

violating the constraint that the transformation be lossless. Every lossless compression algo-

rithm must therefore occasionally produce output sequences that are longer than the input

sequence.1

1If worst-case behaviour is a concern, one can limit by how many bits the output sequence may be longer
than the input sequence. Such a modification compromises compactness of the resulting code, and therefore
comes at the cost of making all output sequences longer.

Example. Consider any algorithm that maps input sequences to output sequences. Modify this algorithm
as follows: Whenever the output sequence is longer than the input sequence, send a single 0 followed by the
bit string of the original input sequence, otherwise send a 1 followed by the compressed output sequence. The
total length of the final output never exceeds the length of the input by more than one bit.

Modifications of this form are used in e.g. the DEFLATE algorithm by Katz and Burg (1993).
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Examples of the sort of ideas used in constructing lossless data compression algorithms can

be found on page 19.

Design philosophy of compression algorithms

It is worth noting that there are different philosophical approaches to compression. One

approach is to design any algorithm that losslessly maps input to output data, and then

prove that the produced output has desirable properties. Commonly investigated properties

include worst-case behaviours of the algorithm, resource costs, and the asymptotic limit of the

compression rate. Notable examples of algorithms in this category include the LZ77 and LZW

methods, and compressors using the Burrows–Wheeler transform (explained in chapter 2).

Such algorithms do not necessarily represent (or compute) the probability distribution over

input objects explicitly.

A second approach is to model the input data directly with a probability distribution, and

construct an algorithm that uses this distribution (or an approximation thereof) to compute

the compressed output data. Methods of this kind are typically easier to combine, modify

and reason about, as the coding is cleanly separated from the modelling. Notable examples

include algorithms from the PPM family (explained in chapter 6), the CTW family,2 and the

PAQ family (not covered in this thesis).3

These two philosophies are not necessarily disjoint. The approach taken in this thesis is the

one of explicit probabilistic modelling and arithmetic coding.

1.3 Outline of this thesis

The remainder of this thesis is organised as follows. Chapter 2 introduces basic concepts and

reviews selected classic compression algorithms. Chapter 3 presents arithmetic coding, the

fundamental coding algorithm that underlies most of the compression techniques discussed

in later chapters. For concreteness, the implementation of the arithmetic coder used in this

thesis is included as JAVA source code. Chapter 4 describes several basic adaptive compression

methods that use Bayesian inference for learning an unknown symbol distribution directly

from the input data. Proof is given that a sequence of independent and identically distributed

symbols is equally well compressed by an adaptive technique and a batch technique that

compresses the sequence’s symbol histogram and permutation separately.

2The CTW algorithm was developed by Willems et al. (1993, 1995); Willems (1998). For details of CTW

and comparisons with PPM, see e.g. Åberg and Shtarkov (1997); Åberg et al. (1998); Sadakane et al. (2000);
Begleiter et al. (2004); Begleiter and El-Yaniv (2006).

3Compressors in the PAQ family combine predictions from many probabilistic models (including PPM-like
models) to form a single prediction. The PAQ family of compressors was developed by Mahoney (2000, 2002,
2005).



1.3. OUTLINE OF THIS THESIS 19

A compression puzzle

Consider the task of communicating the state of a chess board using the fewest possible
number of bits. A chess board has 8 × 8 squares, and each square may either be
empty, or contain exactly one chess piece. Each chess piece is one of six different figures
{K, Q, R, B, N, p} and has one of two colours {�,�}. At the start of a game of chess,
there are 32 pieces on the board, arranged as shown in Figure 1.1 below.

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

8 rZ0Z0ZkZ
7 ZbZpZpop
6 pZ0Z0Z0Z
5 ZpZQZ0Z0
4 0Z0ZPZ0Z
3 OPZ0Z0Oq
2 BAPZ0a0O
1 S0Z0ZRZK

a b c d e f g h

(1.1) Opening configuration of a game of chess. (1.2) Configuration of a game in progress.

The reader is encouraged to take a moment to think of possible solutions.

Idea 1. There are 64 squares, and each can have one of 13 possible states: empty, or one of
the six black or six white chess pieces. One way of describing the board would be to encode,
in some fixed order, the state of each square. If 4 bits are used to encode one of the 13 possible
states, the total number of bits for any board configuration would be 64× 4 = 256.

Idea 2. Empty is the most frequent state, it occurs usually at least 32 times (out of 64
possible squares). So for every square (in some fixed order), we could store a single bit 0 or 1
indicating if the square is empty. If the square is non-empty, store which of the 12 pieces it
contains (using 4 bits). For a chess board which has the maximum of 32 pieces, that makes
64 + 32 × 4 bits = 192 bits in total. Boards with fewer pieces are cheaper, and an empty
chessboard costs 64 bits.

Idea 3. Generalising idea 2 leads to a Huffman code over the 13 possible states of each square.
The Huffman algorithm is described in section 2.1.1. Even more efficient coding schemes are
possible with arithmetic coding.

Idea 4. A state of a chess game can never legally have more than two K, or more than
16 p. An algorithm that excludes illegal board configurations can encode legal states more
compactly. One such technique is exclusion coding (described in section 3.5.2).

Idea 5. Not all board configurations are equally probable. Assuming a probability distribution
over board configurations, one could compress a random board configuration with a suitable
derived arithmetic code.
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Chapter 5 introduces and motivates structural compression methods;, derives concrete so-

lutions for a selection of fundamental combinatorial objects;, and shows how these can be

combined.

Chapter 6 reviews context-sensitive compression methods, generalises the PPM algorithm and

shows its relation to the unbounded-depth hierarchical Pitman–Yor sequence model known as

Sequence Memoizer. Quantitative performances of these methods are compared for a number

of corpora.

Chapter 7 describes compression algorithms for multisets of sequences, a concrete application

of the structural compression techniques developed in chapter 5. Finally, chapter 8 concludes

with a brief treatment of cost-sensitive compression and the construction of adversarial se-

quences.



Chapter 2

Classical compression algorithms

This chapter reviews some well-known classical compression algorithms, highlighting some of

the fundamental compression problems encountered in practice. These algorithms have set

foundational trends for the majority of modern compression techniques, and many of them

are still used in practice today. Discussing these methods introduces vital concepts used

throughout this thesis, and motivates the more modern approaches discussed later.

The algorithms were carefully selected to be easy to understand, and are representative mem-

bers of the family of bit-aligned coding methods. Despite their algorithmic simplicity, the

underlying assumptions and probabilistic interpretation of these compressors may not be

immediately obvious. Where possible, the probabilistic properties are pointed out.

Many classical compression methods were the result of experimentation and carefully applied

heuristics. Most compressors in this chapter do not cleanly separate the tasks of modelling and

coding. By contrast, modern approaches to compression often involve the use of a probabilistic

model and an arithmetic coding method. These modern approaches are discussed in chapter 3,

and are in many cases natural generalisations of concepts introduced here.

Some of the algorithms described here are used for baseline comparison throughout the rest

of this thesis.

Notation primer

For the techniques that follow, every input file will be treated as a finite sequence of input

symbols x1 . . . xN . The set of input symbols X is called the source alphabet, and is often

taken to be the set of bytes {0016, . . . FF16}. The set of output symbols Y is called the target

alphabet and is usually the set of bits {0, 1}. In practice, the sequence of output bits has to

be padded to the nearest multiple of 8, so it can be stored as a file, but we’ll gloss over these

practical concerns for now and just focus on the essence of the algorithms.

21
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2.1 Symbol codes

A symbol code C maps each possible input symbol x ∈ X to a fixed length code word C(x) ∈
Y∗ of output symbols. This mapping must have the property that any concatenated sequence

of code words is uniquely decodable to the corresponding sequence of input symbols. A symbol

code can then be used to encode a sequence x1 ... xN by concatenating the code words C(xn)

of each symbol in the sequence. Code words may vary in length, which makes it possible

to represent frequently occurring input symbols with shorter code words, and less frequently

occurring input symbols with longer code words.

It is generally desirable for the code words to be chosen in a way that makes the decoding

process simple and efficient. This can be done by enforcing a prefix property on the code

words, which requires that no code word may be a prefix of another. In a symbol code with

the prefix property, each symbol x can be decoded immediately once the next code word C(x)

is recognised in the input stream, as no other code word can have C(x) as a prefix. The prefix

property makes the termination of each code word easy to detect.

All symbol codes discussed here have the prefix property, and may also be called prefix codes.

Non-prefix codes have no advantage over prefix codes, and for every uniquely decodable non-

prefix code there exists an equivalent prefix code with matching code word lengths. An

encoding and decoding procedure for prefix codes is shown in code listing 2.1.

Symbol Coding

ENCODING DECODING

While there are more input symbols,
repeat:

1. Read input symbol x.

2. Find code word C(x).

3. Output C(x).

Initialise w ← ().
While not EOF, repeat:

1. Read the next symbol y.

2. Update w ← w :: y.

3. If w = C(x) for some symbol x, set w ←
() and output x.

If w 6= (), report error “final buffer not empty”.

Code listing 2.1: A general encoding and decoding procedure for symbol codes with the
prefix property.

As noted in section 1.2, any code implicitly defines a probability distribution for which it is

optimal. Because a symbol code maps each input symbol x to a code word comprising an

integer number of output symbols, the implicit probability mass of each symbol is an integer

power of |Y|−1, where |Y| is the size of the output alphabet. If the output alphabet Y is
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the binary alphabet {0, 1}, a symbol code’s implicit distribution D over source symbols is a

dyadic distribution. A dyadic distribution is one whose probability masses are inverse powers

of two:

∀x ∃k D(x) =
1

2k
(2.1)

For each dyadic distribution D there exists an optimal (though not necessarily unique) binary

symbol code with the property that the length of each code word C(x) is exactly equal to the

symbol’s Shannon information content hD(x). Implicit probability distributions and Shannon

information will be defined in section 3.1.

2.1.1 Huffman coding

More generally, given an arbitrary probability distribution P over a finite set of input symbols,

one can approximate P with the best matching dyadic distribution D, using an algorithm

published by Huffman (1952). The main idea is to give short code words to common symbols;

if symbol B occurs as often as symbols A and C put together, B’s code word should be shorter

than those of A and C. The Huffman algorithm constructs an optimal binary prefix code for

P . The Huffman algorithm is explained in code listing 2.2.

For any symbol distribution P , the Huffman algorithm constructs a code with the shortest

possible expected code word length for a single symbol. The resulting code’s implicit prob-

abilities are the best possible approximation to P within the restrictive confines of binary

symbol coding. But symbol codes do not optimally encode sequences of symbols, unless the

symbol probabilities are integer powers of |Y|−1; this is a consequence of the practice that

code words are simply concatenated, and of the limitation that the code word lengths are

integers.

The restrictions of symbol codes are lifted by arithmetic codes, which assign an output se-

quence to the entire input message rather than to individual input symbols. Arithmetic

coding is described in section 3.2. But symbol codes are still widely used in practice, due to

their simplicity and ease of implementation, as well as computational speed. The Huffman

algorithm is the method of choice for constructing a fixed symbol code.1

Adaptive variants of Huffman codes exist (Gallager, 1978; Knuth, 1985; Vitter, 1987), where

instead of precomputing a fixed Huffman tree for a known distribution, both sender and

receiver use a tree with weighted nodes that changes dynamically with the data. The use of

adaptive Huffman codes is not recommended, as its performance is outclassed by arithmetic

coding in almost every way.

1For a particularly beautiful and efficient implementation, see Moffat and Katajainen (1995).
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The Huffman Algorithm

Input: X and P . Output: a binary tree. Working space: a set S of trees and weights.

1. Create an empty set S of tuples (t, θ),
where t is a (node in a) binary tree, and
θ is an associated weight.

2. For each x ∈ X , create a leaf node tx

and weight θx = P (x), and insert (tx, θx)
into S. The weights sum to 1.

3. While |S| > 1, repeat:

• Find the two tuples (tA, θA) and
(tB, θB) with the smallest weights in
S. (If several tuples qualify, choose
deterministically.)

• Remove (tA, θA) and (tB, θB) from S.

• Create a new tree node tC whose chil-
dren are tA and tB.

• Insert (tC , θA + θB) into S.

4. The single element left in S is a binary tree
corresponding to an optimal prefix code.

Example. A Huffman tree generated from a
5-letter alphabet with associated probabilities.

A
0.1

B
0.2

C
0.14

D
0.26

E
0.3

0 1

0

 1

 0  1

0

 1

Symbol Prob Implied Code word
A 0.1 0.125 010

B 0.2 0.25 00

C 0.14 0.125 011

D 0.26 0.25 10

E 0.3 0.25 11

Code listing 2.2: The Huffman algorithm (Huffman, 1952) for generating an optimal prefix
code. Given a set X of symbols and a probability mass function P , the algorithm constructs
a binary tree representing an optimal prefix code. The binary code word of any symbol can
be found by tracing the path from the root node to the symbol node, encoding each binary
choice using a single bit digit ∈ {0, 1}.

2.2 Integer codes

This section describes some notable classical methods for encoding integers, i.e. elements

from a countably infinite set such as N or Z. Integer codes feature as components in a wide

range of classical compression algorithms, including dictionary-based file compressors and

video codecs. The methods described here were chosen to maximise clarity of explanation, or

because of prevalence in industrial applications.

An integer code C maps any input element n to a code word C(n) ∈ Y∗, where Y is some

finite alphabet, typically {0, 1}. Unlike symbol codes, integer codes must be able to deal

with an infinite number of possible input symbols. The length of any code word is finite, but

unbounded; typical integer codes assign longer code words to larger integers.



2.2. INTEGER CODES 25

Integer codes should have the following properties:

• The mapping between integers and code words of integer codes should be unique, such

that each integer maps to exactly one code word, and each code word maps to a unique

integer.

• Code words should be self-delimiting, i.e. it should never be required to know the length

of a code word in order to decode it: the symbols themselves must carry information

about where any given code word ends.2

• The space of generated sequences should be compact, such that there exists a unique

decoding for every possible infinite sequence of input symbols.

If all three of these properties are fulfilled, any infinite sequence of symbols (y1, y2...) can be

uniquely and efficiently translated to an infinite sequence of integers, and vice versa.

Again, for computational convenience, it helps if the code words satisfy the prefix property.

The code word lengths of an integer code define an implicit probability distribution over

integers, where each integer n has probability mass that is inversely proportional to its code

word length:

Pr(n) =
1

2|C(n)| (2.2)

2.2.1 Unary code

The simplest integer code is probably the unary code, which maps each positive integer n ∈ N

to a sequence of n zeros, followed by a one:

Integer Code word Implied probability
0 1 2−1

1 01 2−2

2 001 2−3

3 0001 2−4

n 00...0
︸ ︷︷ ︸

n

1 2−n−1

It is easy to verify that this code satisfies the criteria from above: it has a unique mapping, its

code words are self-delimiting, and it generates the entire space of possible binary sequences.

One can interpret the unary code as a series of binary questions “Is it k?” starting from k = 0

and incrementing k after each question. When the answer to a question is no, a 0 is written;

when the answer is yes, a 1 is written and the process terminates.

2The requirement that code words be self-delimiting may seem a bit subtle at first. As an example, consider
mapping each positive integer n to its representation in binary. Although the assignment between numbers
and code words is unique, this code is not uniquely decodable, as there is no way to tell from the stream
of binary digits where any given code word ends. Of course, if the lengths of the code words are known in
advance (like in ASCII) or transmitted separately, then this scheme would work.
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The unary code uses n+1 bits to encode any integer n. This code is optimal for the distribution

that assigns to each integer n the probability mass of 2−n−1, i.e. a geometric distribution with

success parameter θ = 1
2
.

2.2.2 Elias gamma code

The perhaps simplest non-unary integer code is the γ-code by Elias (1975). This code assigns

code words to natural numbers greater than zero, n ∈ {1, 2, 3, . . .}.

The code word for integer n is formed by writing n in binary notation (without the leading 1),

prefixed by its string length written in unary, using the unary code from the previous section.

This solves the termination problem, as the unary number can be decoded first – this way,

the decoder knows how many binary digits to read.

For small integers, the Elias γ-code generates the following code words:

Integer Code word Implied probability
1 1 2−1

2 010 2−3

3 011 2−3

4 00100 2−5

5 00101 2−5

6 00110 2−5

7 00111 2−5

8 0001000 2−7

9 0001001 2−7

n 0...0
︸ ︷︷ ︸

⌊log2 n⌋
1....
︸ ︷︷ ︸

n

2−2⌊log2 n⌋−1

This method encodes each integer using 2⌊log2 n⌋ + 1 bits. To encode zero, the code can be

shifted down by 1. To encode all integers i ∈ Z, a suitable bijection can be used; for example,

i =
⌊

n
2

⌋

· (−1)n mod 2 maps natural numbers (1, 2, 3, 4, 5, ...) onto integers (0, 1,−1, 2,−3, ...).

The basic idea behind this coding technique is to augment the natural binary representation

of an integer with a length indicator, making the resulting code words uniquely decodable.

The same basic construction is used by many other integer codes, some of which are reviewed

in the remainder of this section.
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Table 2.1: Code words the exponential Golomb code assigns to various integers, for different
settings of k. For k = 0, the exponential Golomb code produces the same code words as the
Elias γ-code (shifted down by one integer).

Integer Exponential-Golomb code words Integer
(unsigned) k = 0 k = 1 k = 2 k = 3 (signed)

0 1 10 100 1000 0
1 010 11 101 1001 1
2 011 0100 110 1010 −1
3 00100 0101 111 1011 2
4 00101 0110 01000 1100 −2
5 00110 0111 01001 1101 3
6 00111 001000 01010 1110 −3
7 0001000 001001 01011 1111 4
8 0001001 001010 01100 010000 −4
9 0001010 001011 01101 010001 5
10 0001011 001100 01110 010010 −5
11 0001100 001101 01111 010011 6
12 0001101 001110 0010000 010100 −6

2.2.3 Exponential Golomb codes

As an example of integer codes which are widely used in practice, I will describe the family of

exponential Golomb codes. This family is really just one code, parametrised by an integer k

that determines the distribution of code word lengths. In particular, the kth code distributes

the probability mass such that the first 2k integers have equal probability, and a joint mass

of exactly 1
2
. An exponential Golomb code with parameter k encodes a natural number n as

follows:

1. Compute m =
⌊

log2(n + 2k)
⌋

−k, and encode m using the unary code from section 2.2.1.

2. Write the binary representation of n + 2k, omitting the leading 1. This representation

uses exactly k + m bits.

The number m represents the number of additional binary digits needed to encode n, having

made use of k “free digits”. So in total, an exponential Golomb code represents any positive

integer n with exactly
⌊

log2(n + 2k)
⌋

+ 1 bits. Table 2.1 shows some of the code words

generated by exponential Golomb codes with different settings of k.

For example, in the case of k = 3, no additional digits are needed to represent the numbers

0 to 7 in binary, because the k = 3 free digits provide enough space. This means that m = 0

for these numbers, and the unary encoding of m = 0 is the single digit prefix 1. Numbers 8

to 15 require an additional 4th digit, so m = 1, giving unary prefix 01. This coding method

can be used for signed integers, too, usually by alternating the sign with the least significant

digit of the code word, as shown in Table 2.1.
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Figure 2.1: The implicit distributions over integers of various integer codes. Integers are on
the x-axis, and probability mass is on the y-axis.

Industrially, exponential Golomb codes are widely used, e.g. in the H.264 video compression

standard (ITU-T, 2003), and the BBC’s Dirac open video codec (BBC, 2008). H.264 is used

to encode videos on YouTube and BluRay discs, and is implemented by most contemporary

web browsers.

Exponential Golomb codes were originally introduced by Teuhola (1978) as a modification

of Golomb codes (Golomb, 1966). Golomb codes were generalised by Bottou et al. (1998) to

form the Z-Coder, a fast arithmetic coder for binary inputs.

2.2.4 Other integer codes

Plenty of other integer codes exist. Many of these are variations of the construction shown

earlier: an encoding of the integer in binary notation, prefixed by some representation of its

string length, i.e. the number of binary digits. The way the string length is encoded is the

main distinction among different methods.

An interesting edge case is the ω-code by Elias (1975), which encodes natural number n by

prefixing its binary representation with the length m encoded (recursively) using the ω-code

itself, until the base case m = 1 is reached; a final 0 is added to the end to mark termination.

A similarly recursive code was published by Levenshtein (1968).

An example of integer codes which do not follow the above construction is the family of

Fibonacci codes (Kautz, 1965; Apostolico and Fraenkel, 1987; Fraenkel and Klein, 1996).

A Fibonacci code represents any natural number n as a sum of Fibonacci numbers, where
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Table 2.2: Fibonacci code words assigned to integers n = 1 . . . 25 by a Fibonacci code. All
code words terminate with 11. For example, 17 = F (2) + F (4) + F (7): 1203140506171T.

1 11 6 10011 11 001011 16 0010011 21 00000011

2 011 7 01011 12 101011 17 1010011 22 10000011

3 0011 8 000011 13 0000011 18 0001011 23 01000011

4 1011 9 100011 14 1000011 19 1001011 24 00100011

5 00011 10 010011 15 0100011 20 0101011 25 10100011

each Fibonacci number may occur at most once.3 The encoding procedure for n works as

follows: For each Fibonacci number from F (2) upwards, a 1 is written for presence or a 0 for

absence of F (k) in n’s Fibonacci sum representation. The procedure stops after the 1-digit for

the largest contained Fibonacci number is written. The resulting code words are unique, and

have the additional property that the substring 11 never occurs. Appending an additional 1

to the encoded number thus marks termination.

The implicit distributions of several integer codes are shown in Figure 2.1.

2.3 Dictionary coding

Some of the most successful early file compression algorithms belong to the class of dictionary

coding methods. Dictionary coders compress their input sequence by recognising substrings

that occurred earlier in the input, and coding a pointer to the earlier occurrence, rather

than the repeated sequence itself. The encoder stores these substrings in memory in order of

occurrence – this gradually growing list of strings is called the dictionary of the algorithm. The

process is designed such that the dictionary constructed by the encoder can be reconstructed

exactly by the decoder, along with the original symbol sequence.

2.3.1 LZW

A representative and elegant example from the class of dictionary coders is the LZW algorithm

by Welch (1984). Essentially, LZW translates a sequence of characters to a sequence of

pointers into a dynamically constructed dictionary. The pointers into the dictionary are

positive integers and can be encoded with an integer code. A special symbol (EOF) can be

added to the input alphabet for signalling the end of the sequence.

Concretely, the algorithm maintains a dictionary Φ and a counter K of the number of entries

in the dictionary. Initially, Φ contains one entry for each symbol in the input alphabet X ,

and K equals |X |. Whenever a word w is added to Φ, counter K is incremented and the new

3See Zeckendorf (1972, Théorèmes Ia & Ib) for a proof that this representation is unique and exists for all
integers.
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word is stored at position K−1. For any given word w, Φ[w] returns the position at which w

is stored in Φ, and similarly, for any positive integer k < K, Φ−1[k] returns the word stored

at position k.

The compressor maintains a symbol buffer w, which is initially equal to the first symbol of the

input sequence (unless the input sequence is empty, in which case the algorithm terminates).

While w is contained in the dictionary Φ, the next input symbol x is read and appended to w,

until w :: x is not contained in Φ (but w is). The algorithm then encodes Φ[w] using e.g. an

integer code. Then, w :: x is added to Φ at position K, and K is incremented by one. Finally,

buffer w is set to x (the last seen symbol), and the cycle repeats.

It is not immediately obvious that this process is reversible. In particular, the compressor

never explicitly writes x, the final symbol of the newly added word (w :: x), to the encoded

stream. It turns out that x can be deduced because it is also the start symbol of the next

word, allowing the decompressor to complete the last dictionary entry in retrospect. Here’s

how this works:

The decompressor uses the integer code to decode the next word index k. If the total number

of dictionary entries K is greater than |X |, the last added word Φ−1[K−1] in the dictionary is

not yet complete, as its final symbol was unavailable in the last iteration. Since its unknown

final symbol must equal the first symbol of the current word, the decoder can complete

Φ−1[K−1] by appending the first symbol of Φ−1[k]. After this operation, the dictionary is

in a safe state and the decoder can look up the current word w = Φ−1[k] and copy it to the

output. To replicate the actions of the encoder, the next word of form w :: y must be added

to the dictionary, but its final letter y cannot yet be determined. So instead, the decoder adds

the incomplete word w to Φ at position K, leaving it to be completed in the next iteration

of the algorithm. Finally, K is incremented and the cycle repeats. The LZW algorithm is

summarised in code listing 2.3.

2.3.2 History and significance

The family of dictionary coding algorithms started with an algorithm named LZ77 (Ziv and

Lempel, 1977) and its modification LZ78 (Ziv and Lempel, 1978), published one year later.

Many variants followed. Notable ones include:

• LZSS (Storer and Szymanski, 1982), which modifies LZ77 by restricting string substitu-

tions to those which “pay off”; LZSS was used in some of the classic archiving software

of the 1980s, including ARJ, RAR, and the Game Boy Advance.

• LZW (Welch, 1984), which is based on LZ78. It was used in Unix compress (Thomas

et al., 1985), and file standards such as GIF, TIFF and PDF. Many variants of LZW

exist.
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The LZW algorithm

ENCODING DECODING

A. Initialise dictionary Φ with one entry for
each symbol x ∈ X , set K ← |X |, and
w←ε (the empty sequence).

B. While there are more input symbols:

1. Read input symbols until we’ve found
the longest sequence w still contained
in Φ, so that (w :: x) is not in Φ.

2. Find index k = Φ[w], and encode it.

3. Add (w :: x) to Φ, at index K.

4. K ← K + 1.

5. w ← x. (Note that x has not yet been
transmitted.)

C. If w is non-empty, encode Φ[w].

A. Initialise dictionary Φ with one entry for
each symbol x ∈ X , set K ← |X |, and
w←ε (the empty sequence).

B. While there is more to decode, repeat:

1. Decode index k.

2. Look up the word w from Φ−1[k].

3. If K > |X |, then complete word K − 1
in Φ by appending the first letter of w,
and look up w from Φ−1[k] again.

4. Write w to the output.

5. Add incomplete w to Φ at index K.

6. K ← K + 1.

Code listing 2.3: The LZW compression algorithm. The algorithm maintains a dynamic
dictionary Φ, initialized to contain one entry for each symbol in the alphabet X . A new word
is added to Φ in each iteration of the algorithm. The number of words in Φ always equals K,
and the words are stored at positions 0 to K−1 in Φ.
Notes: The end condition of the decoder’s loop in step B could be triggered after decoding
the special EOF symbol, or after a previously communicated message length is reached.

• DEFLATE, which combines LZ77 with Huffman coding, was created by Katz and Burg

(1993) for the pkzip compression utility, and described as part of the ZIP file format

specification by Katz (1993), and in RFC 1951 by Deutsch (1996). DEFLATE is widely

used e.g. in gzip / zlib (Gailly and Adler, 1992), SSH, the Linux kernel, and file formats

such as PDF and PNG.

• LZMA (Pavlov, 2011), which is based on LZ77 but includes various additions, e.g. an

adaptive code for literals (using arithmetic coding), and some basic mechanisms of

context handling. LZMA is the primary algorithm used in 7-zip (Pavlov, 2003), and

was later incorporated into the ZIP file format (Peterson et al., 2006).

Many more variants of the above algorithms exist; some published in journals or conference

proceedings, others simply as source code, e.g. LZMA. As of 2014, advances in dictionary

coding techniques are still regularly published at leading data compression conferences.
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2.3.3 Properties

There are some notable properties of dictionary coding algorithms. Firstly, the compression

ratio of a dictionary coder will (in the infinite limit) converge to the entropy of the input

sequence, assuming an ergodic source. In practice, however, this convergence can be slow.

Secondly, they can operate at high speeds, and are not particularly difficult to implement.

Dictionary coders have been very successful and are widely used.

However, they do not separate the task of data modelling from the task of encoding. This

means that dictionary coders do not provide an explicit understanding of the probabilistic

assumptions they make about the input sequence, and offer few opportunities to adapt the

algorithms to new kinds of input data, at least not straightforwardly.

On human language text and source code, dictionary coders are typically outclassed in com-

pression effectiveness by algorithms such as bzip2, CSE, CTW and PPM.4 Of these latter

algorithms, bzip2 is described in section 2.4.2 and PPM is investigated in detail in chap-

ter 6. Figure 2.3 (on page 36) shows the compression effectiveness of dictionary coders in a

comparison against other algorithms.

2.4 Transformations

Some classical compression algorithms take a modular approach to compression, where instead

of devising a direct coding scheme for the data, the input is transformed into something that

is easier to compress using existing algorithms.

2.4.1 Move-to-front encoding

An example of such a technique includes “move-to-front” encoding (Ryabko, 1980; Bentley

et al., 1986; Elias, 1987; Willems, 1989), which transforms a sequence of symbols x1 ... xN

into a sequence of natural numbers k1 ... kN , where each kn is a backwards pointer to the

most recent occurrence of xn. Each kn is the number of unique symbols that were seen since

xn last occurred.

One way of implementing a move-to-front encoder for a finite alphabet X is to maintain a

recency queue, containing one instance of each symbol x in the alphabet. Each symbol in the

sequence is translated to the number indicating the symbol’s current position in the queue;

after each encoding, the most recently encoded symbol is moved to the front of the queue,

shifting the other symbols back. The decoder can recover the original sequence x1 ... xN from

4Compression by substring enumeration (CSE) by Dubé and Beaudoin (2010) and context tree weighting
(CTW) by Willems et al. (1993) are not discussed further in this thesis, but results are included for comparison.
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S = abracadabra

(form cyclic
rotations)

−→

a b r a c a d a b r a
b r a c a d a b r a a
r a c a d a b r a a b
a c a d a b r a a b r
c a d a b r a a b r a
a d a b r a a b r a c
d a b r a a b r a c a
a b r a a b r a c a d
b r a a b r a c a d a
r a a b r a c a d a b
a a b r a c a d a b r

−→

(sort)

a a b r a c a d a b r
a b r a a b r a c a d
a b r a c a d a b r a
a c a d a b r a a b r
a d a b r a a b r a c
b r a a b r a c a d a
b r a c a d a b r a a
c a d a b r a a b r a
d a b r a a b r a c a
r a a b r a c a d a b
r a c a d a b r a a b

−→ T = rdarcaaaabb

k = 3

(extract index and final

column)

Figure 2.2: An illustrated example of the Burrows–Wheeler transform, showing how the
input string S is used to construct the transformed string T and index k.

the list of numbers k1 ... kN by replaying the actions of the encoder, using an exact replica of

the encoder’s recency queue.

Symbols that occur frequently in the original sequence will, on average, be assigned small

numbers in the transformed sequence. The transformed sequence k1 ... kN can be encoded

in a space-efficient way when small numbers map to short code words, e.g. using a Huffman

code (for finite X ), or an integer code (for infinite X ).

For an infinite alphabet X , Bentley et al. describe an encoding scheme that uses a dynamically

growing queue which is initially empty. When a new symbol is encountered, a special number

is transmitted (e.g. −1) followed by a direct encoding of the new symbol itself.

An example where move-to-front encoding is used in practice is the bzip2 algorithm, which

is explained in the next section.

2.4.2 Block compression

One of the most astonishing classical compression algorithms involves the block-sorting trans-

form of Burrows and Wheeler (1994). The transform itself does not compress its input se-

quence; it merely reversibly rearranges the sequence to a permutation that ends up being

easier to compress.

A notable compressor based on the Burrows–Wheeler block transform is bzip2 (Seward,

1997–2010), which is included with most contemporary Linux, MacOSX and Unix operating

systems.

The transform works as follows. Given a string S (of N symbols), generate the list of all

N cyclic rotations of S, and sort this list in lexicographical order. Record the position k at

which the original (unrotated) string S appears in this sorted list. The transformed string T

is obtained by stepping through the list in sorted order, collecting the final symbol of each

string, and concatenating the result. The resulting string T has length N and is a particular

permutation of the input string S. An example is shown in Figure 2.2.
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The Burrows–Wheeler transform (BWT) has some remarkable properties:

(1) the transform is reversible, i.e. knowing only the transformed string T and index k, it is

possible to reconstruct the original string S.

(2) the transformed string T has characteristics that make it fairly easy to compress with

simple algorithms; for example, bzip2 uses move-to-front encoding followed by Huffman

coding.

Here is an intuitive argument why the transformed string may be easier to compress. A symbol

in natural language text is well predicted by the symbols immediately surrounding it. The

symbols in the final column of the matrix are those which in the original string directly

precede the symbols in the first column, and the first column is in sorted order. The symbols

in the transformed string are therefore arranged in the order of their sorted suffixes, grouping

together similar symbols.

Details can be found in the original article by Burrows and Wheeler (1994), additional research

and analysis is provided in technical reports by Fenwick (1996) and Balkenhol and Kurtz

(1998). An interesting relationship between BWT and PPM is revealed by Cleary et al. (1995,

section 4).

2.5 Summary

This chapter reviewed a selection of classical compression algorithms. Examples included

integer codes (defined over a countably infinite set of numbers), and symbol codes (over

a finite alphabet of symbols). The Huffman algorithm computes an optimal symbol code

for the nearest dyadic approximation to any finite probability distribution. We also looked

at algorithms that capture some contextual dependencies of the input sequence, including

dictionary coders and compressors based on the Burrows–Wheeler block transform. Figure 2.3

shows the compression effectiveness of selected algorithms.

The academic discipline of data compression can be regarded as the art of finding codes

which convey, on average, an arbitrary input message with a shorter number of symbols than

the original input. Each coding scheme necessarily makes assumptions about the data, and

compression is only possible with data for which these assumptions are mostly true. The

assumptions made by the methods in this chapter may not be obvious from their algorithmic

description. One reason for this lack of transparency might be that these algorithms were

expressed as an explicit transformation of the input sequence, either by directly producing the

final sequence of 1s and 0s (e.g. in classic symbol and integer codes), or by producing an inter-

mediate sequence of integers (e.g. dictionary and transform coders) which is then compressed
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further by another method. The units in which these methods “think” are the output symbols,

rather than the probability distributions over inputs their operations implicitly define.

An alternative approach to data compression is to separate the task of coding from the task

of data modelling. This separation makes compression methods easier to design and mod-

ify, as the assumptions about the data are explicitly represented in the form of probability

distributions, and the generation of 1s and 0s is delegated to a general compression coding

algorithm, such as an arithmetic coder. Arithmetic coders (and similar algorithms) place al-

most no restrictions on the kinds of probability distributions that can be used. This fortunate

circumstance allows compression algorithms to focus mainly on the modelling, i.e. the design

and computation of adaptive probability distributions.

The decoupling of coding and modelling is always possible, and never adversely affects com-

pression effectiveness. There may, however, be a cost in terms of computation or algorithmic

simplicity in some cases. For example, there are particularly concise and efficient coding algo-

rithms for some restricted classes of probability distributions; the symbol and integer coding

methods described in this chapter are instances of such algorithms.

On most contemporary computing equipment, the computational costs of using arithmetic

coding are fairly negligible, especially compared to the cost of inference in complex data

models.
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(a) Compression effectiveness of selected algorithms, measured on English language text “Alice in Wonder-
land” (alice29.txt of the Canterbury corpus). For each input length on the x-axis, a truncated version of
the text was made and compressed with all algorithms. The y-axis shows the compressed length (in bits)
divided by the input length (in bytes).
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(b) The same algorithms measured on a sequence of random symbols (random.txt of the artificial corpus).
The sequence contains 100 000 symbols, drawn uniformly from a subset of 64 (out of 256 possible) 8-bit
symbols. Details on the behaviour of compression algorithms on random sequences can be found in section 8.3.

Figure 2.3: Compression effectiveness as a function of input length, for selected classical
algorithms. LZW, compress and gzip are dictionary compressors, bzip2 is a block-sorting com-
pressor, HC(en) is a fixed Huffman code for English text, MTF a move-to-front encoder (with
adaptive index compressor), and orig shows the file’s original encoding. PPMD is described in
chapter 6. (Standard gzip, bzip2 and Unix compress were used for this plot; HC(en), MTF,
LZW and PPMD are my own implementations. Table A.1 on page 186 contains decriptions of
all algorithms.)



Chapter 3

Arithmetic coding

This chapter describes arithmetic coding, an algorithm that produces, given a sequence of

input symbols and associated probability distributions, a near-optimally compressed output

sequence whose length is within 2 bits of the input sequence’s Shannon information content.

The appeal of such a method is that the tasks of data modelling and code generation can be

cleanly separated, allowing compression methods to be constructed through data modelling.

This chapter proposes an architecture for a modular compression library based on arithmetic

coding, which allows compression algorithms to be designed in a coherent, modular and

compositional manner.

For concreteness, this chapter includes a complete implementation of an arithmetic coder

as JAVA source code, and describes how to interface it to various fundamental probability

distributions that serve as building blocks for the compression methods in later chapters.

3.1 Introduction

3.1.1 Information content and information entropy

Data compression and probability theory are fundamentally linked by the relationship of the

probability distribution P , and the expected amount of information required to convey a

random P -distributed object. Given P, an object x has an information content of hP (x) bits,

where:

hP (x) = log2

1

P (x)
. (3.1)

Averaging over all possible messages x ∈ X yields the expected information content of the

probability distribution P, called its information entropy:

H(P ) =
∑

x∈X
P (x) · hP (x) =

∑

x∈X
P (x) · log2

1

P (x)
(3.2)

37
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The information entropy H(P ) of any finite discrete distribution P is highest when P is

uniform, i.e. when all elements have equal probability mass. Both information content and

information entropy are measured in bits, where one bit is the amount of information needed

to convey a choice between two equiprobable options. N bits can convey a choice among 2N

equiprobable options, and a fair choice among K equiprobable options has an information

content of log2 K bits.

The information entropy of a distribution P marks the theoretical limit down to which P -

distributed messages can, on average, be losslessly compressed. No code can expect to com-

municate N messages in fewer than N ·H(P ) bits of information, if the messages are random,

independent, and distributed according to P .

3.1.2 The relationship of codes and distributions

As mentioned in section 1.2, every compression code necessarily assumes, at least implicitly, a

distribution over input objects. Consider a uniquely decodable code C that maps inputs x ∈ X
to code words C(x) ∈ A∗, where A is some finite alphabet. The compression effectiveness of

code C (given |A|, the size of the alphabet) is completely determined by the lengths of the

code words, i.e. by the set of mappings from x to |C(x)|.
These code lengths can be interpreted as a probability distribution PC over input objects:

PC(x) =
1

Z
· |A|−|C(x)| (3.3)

where Z normalises the probabilities to unity. Code C works best on objects that are dis-

tributed according to PC . However, C might not be the best possible code for PC : it might

be a wasteful code whose code words are longer than necessary.

A lossless compression code is optimal for a given probability distribution if the expected code

length for a random message is minimal. The most effective code word lengths, for a given

distribution P , would be:

|COPT(x)| = log|A|
1

P (x)
=

1

log2 |A|
· hP (x). (3.4)

As these quantities are non-integer, it is not generally possible to find code words that match

these optimal lengths exactly. However, it is possible to construct code words whose integer

lengths are “close enough” to the optimal lengths to guarantee that the expected code word

length is within one symbol of the theoretical optimum:

1

log2 |A|
·H(P )

︸ ︷︷ ︸

optimal length

≤
∑

x∈X
P (x) · |C(x)|

︸ ︷︷ ︸

expected length

<
1

log2 |A|
· H(P ) + 1

︸ ︷︷ ︸

optimal length+1

. (3.5)
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For details and proof, see e.g. Cover and Thomas (2006), chapter 5.

3.1.3 Algorithms for building optimal compression codes

One method for constructing an optimal set of code words that satisfies the bound given

in (3.5) is the Huffman algorithm (as described in section 2.1.1). A Huffman code for P

has an expected code word length that’s within one bit of H(P ), the Shannon entropy of P .

However, generating a Huffman code requires enumerating all possible messages in advance,

which makes its use impractical for large or unbounded sets of messages, such as files of human

text.1

Fortunately, there are techniques that can compress single messages efficiently without con-

sidering all possible messages beforehand. An arithmetic coding algorithm (or “arithmetic

coder”, for short) is an example of such a method. Arithmetic coders progressively construct,

for any message x and associated probability distribution P , a single code word whose length

is within 2 bits of hP (x), the Shannon information content of the input. The expected output

length of an arithmetic coder is therefore at most 2 bits worse than that of a Huffman code.

An arithmetic coder can be used whenever the following requirements are fulfilled:

• the input message can be broken up into a series of discrete decisions or symbols,

• the probability distribution over messages can be factorised into a product of univariate

conditional distributions (one for each symbol or decision),

• the cumulative distribution of each of these univariate distributions can be computed.

Section 3.2 describes the principal idea behind arithmetic coding, and includes a concrete

implementation of the algorithm.

Huffman coding versus arithmetic coding. An advantage of arithmetic coding is its

ability to compute the code word for a message without having to consider all other possible

messages or code words. Huffman coding, by comparison, requires comparing the probability

mass of all possible messages. Disadvantages of arithmetic coding include that the generated

output can be longer than that of a Huffman code. Consider, for example, encoding exactly

one of two possible messages {A, B}, where P (A) = 0.999 and P (B) = 0.001. The information

contents of the two messages are hP (A) ≈ 0.001 bits and hP (B) ≈ 9.966 bits. The Huffman

algorithm allocates code words of length 1 to each message, which is optimal if only one

1Note that a Huffman code over source symbols is optimal only for encoding a single symbol. Encoding a
sequence of symbols by concatenating those Huffman code words is not generally optimal (except when the
symbols in the sequence are independent and identically distributed with known and strictly dyadic symbol
probabilities).
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message is to be transmitted. An arithmetic coder requires 1 bit of output to communicate

message A, and ca. 10 bits for message B.

Assuming that only a single message is being transmitted, and that all messages and their

probabilities P (x) can be enumerated, the Huffman algorithm is guaranteed to produce an

optimal code for P -distributed messages. If the number of possible messages is very small, and

if the probability distribution over messages doesn’t change, constructing a Huffman code is

most likely the best thing to do; in most other situations (such as compressing files of human

text), arithmetic coding is the tool of choice.

Arithmetic coding can be viewed as a natural generalisation of Huffman coding: when used

on dyadic input distributions, the output produced by an arithmetic coder is identical to that

of a Huffman coder. For a concrete demonstration of the similarity of both algorithms see

e.g. the article by Bloom (2010).

A note on the term ‘entropy coding’. In the compression literature, there seems to be

wide-spread and inconsistent use of the term entropy coding. For lack of a precise definition,

use of this term is best avoided entirely; more information is given on page 41.

3.2 How an arithmetic coder operates

Arithmetic coding is a general coding method that compresses a sequence of input symbols

x1 ... xN , given associated probability distributions P1 ... PN , to a sequence of binary digits

whose length is within 2 bits of the sequence’s information content. The probability distribu-

tions P1 ... PN must be available to both the sender and the receiver.

In a nutshell, arithmetic coding successively maps each input symbol xn to an interval Rn ⊆
Rn−1 in proportion to its probability mass Pn(xn), starting from R0 = [0, 1). The encoded

file is the binary representation of the shortest number r ∈ R inside the final interval RN .

3.2.1 Mapping a sequence of symbols to nested regions

Consider a sequence of symbols x1 ... xN with associated probability distributions P1 ... PN .

The joint probability mass of the sequence is:

Pr(x1 ... xN | P1 ... PN) =
N∏

n=1

Pn(xn) (3.6)

An arithmetic coder can map this sequence to a series of nested regions of the unit interval,

one symbol at a time. The process starts out with the interval R0 = [0, 1). For some arbitrary

ordering of the symbols in the alphabet X , this interval is partitioned into non-overlapping
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Reasons for avoiding the term ‘entropy coding’

The first occurrence of the term entropy coding I could find appears in a paper by Goblick and
Holsinger (1967) on the digitization of analog signals. The authors give a definition with local
scope, in the context of a particular encoding method.
An alternative source of the term might be a paper by O’Neal (1967) on the same topic, which
contains the following statement:

[...] Therefore, the technique of entropy coding [5] (also called “Shannon–Fano
coding” or “Huffman coding”) can be used either to increase the S/N ratio for a
given bit rate or to decrease the bit rate for a given S/N ratio. [...] where [5] refers
to a book by Fano (1961).

In 1971, the same author published an article with “entropy coding” in the paper title. The
text contains the plural: “entropy coding techniques (Huffman or Shannon–Fano coding)”. No
reference or definition is given.
A paper by Berger et al. (1972) makes heavy use of the term “entropy coding”, but gives no
explicit reference to its definition or origin. However, the authors were aware of the paper by
Goblick and Holsinger (1967), as it is referenced in their bibliography. From 1972 onwards,
many papers contain the term “entropy coding”, possibly copying O’Neal’s use of the term.
Where definitions do show up, they are rather vague. For example, ITU recommendation
H.82 (ITU-T, 1993) defines an “entropy coder” to be any lossless method for compressing or
decompressing data. Similarly, the book by Wiegand and Schwarz (2011) defines entropy coding
to be a synonym for “lossless coding” and “noiseless coding”. No explanations or references are
given.

What the term “entropy coding” could mean:

• “any coding method whose expected rate of compression equals the entropy of the input
distribution.” But a better criterion than the expected rate of compression is the actual
compression: a coding method whose output length is equal to the Shannon information
content of the input. Also, it’s possible to construct optimal codes for sources that do
not even have a finite entropy.

• “a coding method whose distribution over output symbols has high entropy.” Such a
definition would not even imply compression; typical encryption methods, for example,
also produce output symbols with uniform probability.

In summary, “entropy coding” doesn’t seem a clearly defined or distinguished concept. Leading
text books, e.g. by Cover and Thomas (1991, 2006) or MacKay (2003), do not contain the term
“entropy coding”, and discuss optimal codes instead. Following their example, the term entropy
coding is not used further in this thesis.
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regions, one for each symbol x ∈ X , in proportion to the mass P1(x) of its symbol. Once the

arithmetic coder knows the first symbol x1, it chooses the region R1 matching that symbol,

and discards all information about the other regions.

Similarly, the process continues for the remaining symbols. At step n, the previously computed

region Rn−1 is divided into subintervals according to Pn, and the next region Rn is selected

by the next symbol xn.

The final region RN contains the sequence of choices made for each symbol, such that the

size of RN matches the joint probability mass of all symbols in the sequence, as given in

equation (3.6). The key observation is that knowing the final region RN and the probability

distributions P1 ... PN is sufficient for reconstructing the original sequence x1 ... xN .

3.2.2 Mapping a region to a sequence of symbols

Given the final region RN and the symbol distributions P1 ... PN , the original sequence

x1 ... xN can be recovered as follows. Starting from n = 1 and the unit interval [0, 1),

each symbol xn can be recovered by partitioning the current interval into regions according to

Pn, and selecting the region that contains RN as a subregion. The label of the chosen region is

the original symbol xn. The process continues recursively from the previously chosen region,

until all N symbols are recovered.

For the recovery process to work, only a single point (or subregion) inside the final region RN

needs to be known, rather than the exact region boundaries of RN . In this case, the first N

symbols can still be reconstructed perfectly, but N itself cannot. Unless the sequence length

N is known in advance, it must be encoded separately, e.g. by using a special EOF symbol

to mark the termination of the sequence. (Methods of encoding sequence termination are

discussed in section 5.7.2.)

Adaptive distributions. Arithmetic coding allows a different distribution to be used for

each symbol in the sequence. Furthermore, the probability distribution Pn at timestep n is al-

lowed to depend on the previous symbols x1 ... xn−1, because Pn is only needed after xn−1 has

been decoded. This property makes it possible to use adaptive distributions, e.g. distributions

that gradually adjust by learning from previous symbols in the sequence. Adaptive compres-

sion techniques are described in more detail in chapter 4, and find use in state-of-the-art

sequence compressors (such as those investigated in chapter 6).

3.2.3 Encoding a region as a sequence of binary digits

Having shown how to represent a sequence of symbols with a region RN , and how to recover

the sequence again from this region, it remains to be shown how to encode RN to an output
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sequence of binary digits. The method is beautiful and simple: we can apply the procedure

from section 3.2.2, but instead of using the input alphabet X and distributions P1 ... PN , we

use the binary alphabet {0, 1} and uniform probabilities U(0) = U(1) = 1
2

for each subregion.

At every step of this procedure, the current region (again, starting from [0, 1)) is subdivided

into two equal halves, one for digit 0, and one for digit 1. If the known target region RN

lies completely within the 0-region, a 0 is written, and the 0-region is used as the enclosing

region for the next coding step. Similarly, when RN lies within the 1-region, a 1 is written.

The procedure repeats until the current region lies completely inside the target region RN ,

resulting in M binary output digits s1 ... sM . It is then possible to reconstruct a subregion

of RN from s1 ... sM (using U1 ... UM), and from there also the original sequence x1 ... xN

(using P1 ... PN).

More generally, arithmetic coding can be used to compactly translate a sequence of values

from a source distribution to a sequence of values distributed according to a target distribution.

(This slightly more general functionality is used e.g. in section 8.1 to compress messages to

output alphabets with unequal symbol lengths.)

Practical arithmetic coding algorithms can perform this translation gradually, keeping only

as much state information as is required to produce the next output symbol.

3.3 Concrete implementation of arithmetic coding

In practice, arithmetic coders are typically implemented using fixed width integer arithmetic.

A concrete implementation of such a fixed-precision coder was published by Witten, Neal

and Cleary (1987), and developed further by Moffat, Neal and Witten (1998). The arithmetic

coder proposed in this chapter is based on their work; its full source code is shown on pages 47–

48.

Background. In a fixed-precision arithmetic coder, the interval [0, 1) is represented by a

range of integers from 0 to 2b − 1, where b is the bitwidth of available integer variables. The

coder for this chapter was written in JAVA and uses variables of type long (64 bits wide).

The internal state of an arithmetic coder is the current region Rn, which in a fixed-precision

implementation is represented with two integers, e.g. L (the low pointer) and R (the region

width). Fixed-width coders typically also store an additional quantity named bits waiting,

which is explained in detail by Moffat et al. (1998). These internal quantities are modified

whenever a new source symbol is read from the input, and whenever a compressed symbol is

written to the output.

Innovations of the proposed coder. When compressing a sequence with an arithmetic

coder, every input symbol xn must be accompanied by a distribution Pn; this distribution is
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Figure 3.1: Proposed architecture of compression algorithms based on probabilistic models
and arithmetic coding. The region mapper uses the model’s predictive distribution to translate
encoding and decoding requests into calls to the arithmetic coder. The components may be
separate or combined entities.

used to partition the current region into subregions. The arithmetic coder proposed in this

chapter never handles symbols or probabilities explicitly, and instead relies on the implemen-

tation of the probabilistic source model to translate symbols xn and symbol distributions Pn

to discrete regions.

This design choice allows probability distributions to offer a simple function interface for

compressing and decompressing values, without the need to expose the inner workings of the

arithmetic coder. For example, encoding a value x with a distribution P can be expressed as

P.encode(x,ec), where ec is an instance of an arithmetic encoder. Similarly, the correspond-

ing inverse operation is given by x = P.decode(dc) where dc is an instance of an arithmetic

decoder. P need not be a distribution over symbols, it could be a distribution over numbers,

vectors, strings, sets or any type of object. Figure 3.1 shows a graphical representation of the

proposed interface.

The implementation of the probability distribution P must provide the encode and decode

functions: these two functions are responsible for mapping any element x to a discrete region

whose size is approximately proportional to P (x).2 The region boundaries are communicated

to an arithmetic coder instance using the functions shown in Table 3.1.

2At least implicitly, the encode and decode functions necessarily compute a discrete form of PΣ (the
cumulative distribution of P ). The implementation must ensure that every input x with positive probability
mass P (x) > 0 is mapped to a region of non-zero width, as those inputs would otherwise become unencodable.
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Use Operation Description

ENC+DEC long getRange() Returns R, the current range of the coder.

ENC void storeRegion(l,h) Zooms into the discrete region (l,h), and writes
compressed output bits if possible. The region
is specified with integers l, the lower (inclusive)
point of the region, and h, the upper (exclusive)
point.

DEC long getTarget() Returns an integer between 0 (inclusive) and R− L

(exclusive) that allows the decoder to identify the
next region.

DEC void loadRegion(l,h) Zooms into the discrete region (l,h), and reads
compressed bits from the input if necessary.

Table 3.1: Components of the arithmetic encoding and decoding interface. Probabilistic
model implementations use these functions to communicate discrete regions for encoding and
decoding. Code listing 3.5 shows how a model’s encode and decode methods might be
structured.

The design of suitable encode and decode functions is not always trivial; for example, mul-

tivariate distributions and distributions with infinite support may require special treatment.

A selection of useful techniques can be found in section 3.4. Implementations for many com-

mon probability distributions are included in the compression library written for this thesis.

A historically prominent application of arithmetic coding is the encoding of symbols whose

probability mass is computed from their empirical occurrence counts, for example as follows:

P (xN = x | x1 ... xN−1) =
#[xn = x]N−1

n=1 + 1

N + |X | . (3.7)

where |X | is the size of the symbol alphabet. This application presumably motivated the

design of the procedure narrow_region(l,h,t) in the Witten–Neal–Cleary coder, which

computes the next region by scaling cumulative counts l and h relative to a total count t.

Of course, adaptive symbol models are not limited to the form shown in (3.7), and symbol

probabilities are not generally integer fractions. For these reasons, I advocate the more general

interface shown in Table 3.1, as it allows models greater control over the computation of

regions. For completeness and convenience, traditional versions of storeRegion, loadRegion

and getTarget that include built-in scaling are given in code listing 3.4.3

3The original form of the PPM algorithm by Cleary and Witten (1984a) can be implemented entirely using
these traditional versions. An in-depth treatment of PPM is given in chapter 6.
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Arithmetic Coding: example application

public class ABC {

/** Local state */

int na = 1;

int nb = 1;

int nc = 1;

int all = 3;

/** Records a symbol observation . */

public void learn(char c) {

switch(c) {

case ’A’: na++; break;

case ’B’: nb++; break;

case ’C’: nc++; break;

default : throw new IllegalArgumentException();

}

all ++;

}

/** Encodes a symbol. */

public void encode(char c, Encoder ec) {

switch(c) {

case ’A’: ec. storeRegion (0, na , all ); break;

case ’B’: ec. storeRegion (na , na+nb , all ); break;

case ’C’: ec. storeRegion (na+nb , all , all ); break;

default : throw new IllegalArgumentException();

}

}

/** Decodes a symbol. */

public char decode( Decoder dc) {

long t = dc. getTarget (all );

if (t >= 0) {

if (t < na) {

dc. loadRegion (0, na , all );

return ’A’;

} else

if (t < na+nb) {

dc. loadRegion (na , na+nb , all );

return ’B’;

} else

if (t < all) {

dc. loadRegion (na+nb , all , all );

return ’C’;

}

}

throw new IllegalStateException();

}

} // end of class ABC

public class ABCTest {

public static void main(String [] args) throws Exception {

/* Compressing a sequence of ternary values */

char[] data = new char[] { ’B’,’B’,’B’,’B’,’A’,’B’,’B’,’B’,’C’ };

ABC abc = new ABC ();

Arith ac = new Arith();

BitWriter bw = IOTools. getBitWriter ("output.bin");

ac.start_encode (bw);

for (char x : data) {

abc. encode(x,ac);

abc. learn(x);

}

ac.finish_encode (); // writes "0111 1001 0100 1"

bw.close (); // appends "000" to fill the last byte

/* Decompressing the sequence */

abc = new ABC (); ac = new Arith();

BitReader br = IOTools. getBitReader ("output.bin");

ac.start_decode (br);

String s=""; // we append decompressed symbols here

char x;

do {

x = abc. decode(ac);

abc. learn(x);

s += x; // append symbol x

} while (x != ’C’);

ac.finish_decode ();

br.close ();

System.out. println(" Decoded: "+s); // prints " BBBBABBBC "

}

} // end of class ABCTest

Code listing 3.1: An example of arithmetic coding used to compress a sequence of ternary
values xn ∈ {A, B, C}. The class ABC implements three methods: encode, decode, and learn.
These methods are called in the class ABCTest for adaptively compressing a fixed sequence to
an external file output.bin, and then decompressing this file to recover the original sequence.
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Arithmetic Coding

CONSTANTS LOCAL STATE

/** Number of bits available . */

final long b = Long.SIZE - 2;

/** Index of lower quarter. */

final long lb = (long) 1 << (b -2);

/** Index of midpoint. */

final long hb = (long) 1 << (b -1);

/** Index of top point. */

final long tb = ((long) 1 << b) - 1;

/** Mask of b 1- bits. */

final long mask = tb;

/** Current range of coding interval . */

long R;

/** Low index of coding interval. */

long L;

/** Target location in coding interval. */

long D; // Decoder only

/** Number of opposite - valued bits queued. */

long bits_waiting ; // Encoder only

BitWriter output = null;

BitReader input = null;

MAIN PROCEDURES

/** Outputs encoder ’s processed bits. */

void output_bits () {

while (R <= lb) {

if (L+R <= hb) {

output_all ((byte) 0);

} else

if (L >= hb) {

output_all ((byte) 1);

L = L - hb;

} else {

bits_waiting ++;

L = L - lb;

}

L <<= 1; R <<= 1; // zoom in

}

}

/** Writes a bit , followed by bits_waiting

* bits of opposite value. */

void output_all ( byte bit) {

output. writeBit (bit );

while (bits_waiting > 0) {

output. writeBit ((byte) (1 - bit ));

bits_waiting --;

}

}

/** Sets a region. */

void narrow_region (long l, long h) {

L = L + l; // CAUTION: l, not 1

R = h - l;

}

/** Discards decoder ’s processed bits. */

void discard_bits () {

while (R <= lb) {

if (L >= hb) {

L -= hb; D -= hb;

} else

if (L+R <= hb) {

// in lower half: nothing to do

} else {

L -= lb; D -= lb;

}

L <<= 1; R <<= 1; // zoom in

D <<= 1; D &= mask; D += input.readBit ();

}

}

/** Loads a region. */

public void loadRegion (long l, long h) {

narrow_region (l,h);

discard_bits ();

}

/** Returns a target pointer. */

public long getTarget () { return D-L; }

/** Returns the coding range. */

public long getRange () { return R; }

/** Encodes a region. */

public void storeRegion ( long l, long h) {

narrow_region (l,h);

output_bits ();

}

Code listing 3.2: JAVA source code of the main operational procedures in an arithmetic
coder. The shaded methods are intended for external use.
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Arithmetic Coding: starting and stopping

STARTING STOPPING

/** Starts an encoding process. */

void start_encode ( BitWriter output) {

this.output = output;

L = 0; // lowest possible point

R = tb; // full range

bits_waiting = 0;

}

/** Starts a decoding process. */

void start_decode ( BitReader input) {

this.input = input;

D = 0;

// fill data pointer with bits

for (int k=0; k<b; k++) {

D <<= 1;

D += input. readBit ();

}

L = 0;

R = tb; // WNC use "tb", MNW use "hb"

}

/** Finishes an encoding process. */

void finish_encode () {

while (true) {

if (L + (R >>1) >= hb) {

output_all (( byte) 1);

if (L < hb) {

R -= hb - L; L = 0;

} else {

L -= hb;

}

} else {

output_all (( byte) 0);

if (L+R > hb) { R = hb - L; }

}

if (R == hb) { break; }

L <<= 1; R <<= 1;

}

}

/** Finishes a decoding process. */

void finish_decode () {

// no action required

}

Code listing 3.3: JAVA source code of the start and stop procedures in an arithmetic coder.

Arithmetic Coding: default scaling

void narrow_region (long l, long h, long t) {

long r = R / t;

L = L + r*l;

R = h < t ? r * (h-l) : R - r*l;

} // Moffat -Neal - Witten (1998)

void storeRegion ( long l, long h, long t) {

narrow_region (l,h,t);

output_bits ();

}

void loadRegion ( long l, long h, long t) {

narrow_region (l,h,t);

discard_bits ();

}

long getTarget (long t) {

long r = R / t;

long dr = (D-L) / r;

return (t -1 < dr) ? t-1 : dr;

} // Moffat -Neal -Witten (1998)

void narrow_region2( long l, long h, long t) {

long T = (R*l) / t;

L = L + T;

R = (R*h) / t - T;

} // Witten -Neal -Cleary (1987)

long getTarget2 (long t) {

return (((D-L +1)*t)-1) / R;

} // Witten -Neal -Cleary (1987)

Code listing 3.4: JAVA source code for the “default scaling” variants of the main interface
methods storeRegion, loadRegion and getTarget, using the scaling code by Moffat, Neal
and Witten (1998). The scaling method by Witten, Neal and Cleary (1987) is included for
comparison.
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Template methods for arithmetic encoding and decoding

COMPRESSION

void encode (X x, Encoder ec) {

long r = ec. getRange();

// find (l,h) for x, given r

ec. storeRegion(l,h);

}

DECOMPRESSION

X decode ( Decoder dc) {

long r = dc. getRange();

long t = dc. getTarget();

// find (l,h,x) from (r,t)

dc. loadRegion(l,h);

return x;

}

Code listing 3.5: A sketch of low-level encode and decode methods implementing com-
pression and decompression using the arithmetic coding interface. The implementing class
would typically be a probability distribution over objects x of a class X, and include means
of computing discrete regions (l,h) for any object x (given the currently available coding
range r).

3.3.1 Historical notes

Arithmetic codes were first made practical through the development of coding operations in

finite precision arithmetic by Rissanen (1976) and Pasco (1976). These ideas were advanced

further by Rissanen and Langdon (1979, 1981); Langdon (1984) and others, but it is fair

to add that many people worked on arithmetic codes, with the original idea of the method

even tracing back to Shannon’s paper on information theory (1948). Details on the history

of arithmetic coding can be found in the PhD thesis of Sayir (1999).

The arithmetic coding algorithm of this chapter is based on the designs by Witten, Neal and

Cleary (1987) and Moffat, Neal and Witten (1998). A tutorial on arithmetic coding can be

found e.g. in a technical report by Howard and Vitter (1992).

Aside. Arithmetic coding can be understood as a generalised change of number base. As an

illustration, consider feeding e.g. a few hundred digits of the binary expansion of π
10

=.0101000

001101100101111011101101001110011... into the arithmetic decoder described earlier. The

decoder, decompressing this input sequence to uniformly distributed decimal digits {0...9},
produces the familiar looking output sequence 31415926535897932414227... The shaded

region indicates where the decoded digits begin to differ from the true decimal expansion of

π: this deviation is a consequence of using finite-precision arithmetic coding.

3.3.2 Other generic compression algorithms

There are other generic algorithms that produce near-optimal compression codes for arbitrary

distributions. The Q-coder by Pennebaker et al. (1988), for example, is a carefully optimised

implementation of arithmetic coding for binary alphabets. It is always possible, given a
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discrete probability distribution and an outcome x, to encode x as a sequence of biased

binary choices; the Q-coder can therefore be used as universally as an arithmetic coder can.

Similarly, the Z-coder by Bottou et al. (1998) produces an optimal compression code for any

sequence of binary input symbols and associated biases. The operation of the Z-coder is dif-

ferent from the Q-coder and the arithmetic coding algorithm, and is based on a generalisation

of Golomb codes (Golomb, 1966).

3.4 Arithmetic coding for various distributions

In this section, I’ll discuss how arithmetic coding can be used in practice to encode data from

various basic probability distributions. These basic distributions provide important building

blocks from which more complex models can be built. Examples of such models can be found

in later chapters of this thesis. The techniques presented here are therefore of important

practical use, and also serve as concrete examples of how arithmetic coding can be applied in

practice.

3.4.1 Bernoulli code

The perhaps simplest use of an arithmetic coder is the compression of Bernoulli variables

with known bias, i.e. a sequence of binary outcomes from coin flips with a known bias ϕ. Of

course, such a sequence could be encoded näıvely by simply writing the outcomes with binary

symbols ∈ {0, 1} unmodified, and in the case that the coin is fair (i.e. ϕ = 1
2
), this encoding

procedure is in fact optimal. But for biases different from 1
2
, or output alphabets other than

binary, an arithmetic coder will be more effective.

The Bernoulli distribution over values {0, 1} is defined as:

Bernoulli(x | ϕ) = ϕ1−x (1− ϕ)x (3.8)

where the bias ϕ is the probability of obtaining a 0. To encode a Bernoulli-distributed value x

with an arithmetic coder, each possible value (0 or 1) must be mapped to a region whose size

is roughly proportional to its probability. Using the interface from Table 3.1, this mapping

can be implemented by checking the coder’s current range R with getRange(), and finding

the integer M that is closest to R · ϕ, and not equal to 0 or R itself. The tuples (0, M) and

(M, R) then identify the regions. Concrete procedures for encoding and decoding are shown

in code listing 3.6.
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Arithmetic coding for Bernoulli distributions

ENCODING DECODING

void encode(int x, Encoder ec) {

1. Get R← ec.getRange () .

2. Compute M ← round(R · ϕ).

3. Ensure 0 < M < R.
(If necessary, adjust M ← M ± 1.)

4. If x = 0:
ec.storeRegion(0, M).

Otherwise:
ec.storeRegion(M, R).

}

int decode(Decoder dc) {

1. Get R← dc.getRange () .

2. Compute M ← round(R · ϕ).

3. Ensure 0 < M < R.
(If necessary, adjust M ←M ± 1.)

4. Set T ← dc.getTarget ().

5. If T ≤M :
dc.loadRegion(0, M). Return 0.

Otherwise:
dc.loadRegion(M, R). Return 1.

}

Code listing 3.6: Fixed-precision arithmetic encoding and decoding procedures for a
Bernoulli distribution with bias ϕ, where ϕ is the probability of outcome 0. The arguments
ec and dc are pointers to instances of an arithmetic encoder and decoder.

3.4.2 Discrete uniform code

Generalising a fair choice between two options, a discrete uniform distribution defines a choice

among N equiprobable options (for any finite N), such that each value n ∈ {1, ..., N} has

probability 1
N

. Encoding and decoding procedures for such a distribution could use the scaling

versions of storeRegion, loadRegion, and getTarget from code listing 3.4. Encoding an

integer n is as simple as invoking ec.storeRegion(n−1, n, N). Decoding works by obtaining

k ← dc.getTarget(N), calling dc.loadRegion(k, k+1, N), and returning n = k+1.

3.4.3 Finite discrete distributions

The approach of the previous two sections can be generalised to distributions P over N

possible values, where N is finite. Each of the N possible values {1, ..., N} must be mapped

to a discrete region in the coder’s current range R.

Any method that achieves the above necessarily computes P ’s cumulative distribution in

some form. Intuitively, this is because each element is mapped to a line-segment of a length

proportional to the element’s probability mass, and the location of the segment is given by

the sum of all preceding segment sizes. The order of the segments doesn’t matter, and can

be chosen for computational convenience, as long as the encoder and decoder agree.
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P ’s cumulative distribution can be defined as follows:

PΣ(n)
def
=

n−1∑

k=1

P (k) (3.9)

and P +
Σ (n)

def
= PΣ(n) + P (n). (3.10)

The cumulative distribution can be used to map each n ∈ {1, ..., N} to a region [PΣ(n),

P +
Σ (n)) of length P (n) inside the unit interval. To use these regions with our fixed-precision

arithmetic coder, the boundaries must be scaled to integers between 0 and R, taking care

that there are no gaps and that no region has a width of zero.

A brute-force way of computing discrete regions with the above constraints is shown in code

listing 3.7. To improve efficiency, it may help to choose an ordering in which high probability

elements (i.e. large regions) come first, so that the expected number of summations and

evaluations of P is kept low.

The computational costs can be lowered in certain circumstances. For example, when the

distribution P is used frequently and changes rarely, one might cash a precomputed copy of

the cumulative distribution PΣ and scale it on demand. Even cheaper alternatives may exist

when PΣ can computed in closed form, avoiding the need to iterate over the elements.

3.4.4 Binomial code

The binomial distribution describes the number of successes versus failures in a set of N

independent Bernoulli trials. It is parametrised by natural number N and success probability

θ, and ranges over positive integers n ∈ {0 . . . N}. A binomial random variable has the

following probability mass function:

Binomial(n |N, θ) =

(

N

n

)

· θn (1− θ)N−n (3.11)

Encoding a binomial random variable with an arithmetic coder requires computing the cumu-

lative distribution function of the binomial distribution. A method for doing this efficiently

is to make use of the following recurrence relation:

Binomial(n + 1 |N, θ) =
N − n

n + 1
· θ

1− θ
· Binomial(n |N, θ) (3.12)

The cumulative binomial distribution can then be computed as follows. Initialise:

BΣ := 0 (3.13)

B := (1− θ)N (3.14)
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Budget allocation algorithm

public static <X> HashMap <X,Long > getDiscreteMass(Mass <X> mass ,

Iterable <X> set , long budget) {

HashMap <X,Long > map = new HashMap <X,Long >();

int n = 0; // number of elements

long sum = 0L; // total allocated mass

for (X x : set) {

final double m = mass. mass(x);

long mb = (long) (m * budget );

if (mb <= 0L) { mb = 1L; }

map.put(x, mb);

sum += mb; n++;

}

// deal with left - over or overspent budget:

long diff = budget - sum;

if (diff > 0L) {

// underspent budget

int delta =

(diff > n) ? (int) (diff/n) : 1;

for (Map.Entry <X,Long > e : map.entrySet ()) {

e. setValue(e. getValue ()+ delta);

diff -= delta;

if (diff==0L) { break; }

else

if (diff <= n) { delta = 1; }

}

} else

if (diff < 0L) {

// overspent budget

int delta =

(diff < -n) ? (int) - ( diff/n) : 1;

for (Map.Entry <X,Long > e : map.entrySet ()) {

Long v = e. getValue ();

if (v > 1L) {

e. setValue (v- delta);

diff+= delta;

}

if (diff==0L) { break; }

else

if (diff >= -n) { delta = 1; }

}

}

return map;

}

public static <X> void encode(X x,

Mass <X> mass ,

Iterable <X> order ,

Encoder ec) {

long sum = 0L;

Map <X,Long > map = getDiscreteMass(

mass , set , order , ec.getRange ());

for (X y : order) {

long m = map.get(y);

if (x. equals(y)) {

ec. storeRegion (sum ,sum+m);

return;

}

sum += m;

}

// unsupported element

throw new RuntimeException();

}

public static <X> X decode(

Mass <X> mass ,

Iterable <X> order ,

Decoder dc) {

long sum = 0L;

Map <X,Long > map = getDiscreteMass(

mass , set , order , dc.getRange ());

long r = dc. getTarget ();

for (X x : order) {

long m = map.get(x);

if (r >= sum && r < sum+m) {

dc. loadRegion (sum ,sum+m);

return x;

}

sum += m;

}

// unused coding range

throw new RuntimeException();

}

Code listing 3.7: A JAVA method that discretizes a probability mass function mass (over
any iterable space X) to a given integer budget. The method returns a map from elements
in X to integers that sum to the given budget. Summing the resulting integers returns region
boundaries that can be used with the arithmetic coding interface: suitable implementations
of encode and decode are shown in the shaded boxes.
Note: These three methods are presented in this form mainly for clarity of illustration, they
can (and should) be optimised.
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To encode a binomially distributed value n, repeat for each k from 1 . . . n:

BΣ := BΣ + B (3.15)

B :=
N − k

k + 1
· θ

1− θ
· B (3.16)

The interval [BΣ, BΣ +B) is then a representation of n that can be scaled for use with a

finite-precision arithmetic coder.

3.4.5 Beta-binomial code

The Beta-binomial compound distribution results from integrating out the success parameter

θ of a binomial distribution, assuming θ is Beta distributed. The Beta distribution is a

continuous distribution over the unit interval [0, 1,]and is defined as follows:

Beta(θ | α, β) =
Γ(α + β)

Γ(α) Γ(β)
· θα−1 (1− θ)β−1 , (3.17)

where Γ(·) denotes the Gamma function.4 The Beta-binomial distribution expresses the prob-

ability of getting exactly n heads from N coin flips, when the coin has an unknown, Beta-

distributed bias θ.

The Beta-binomial distribution is parametrised by the number of trials N and the parameters

α and β of the Beta prior:

BetaBin(n |N, α, β) =
∫

Binomial(n |N, θ) · Beta(θ | α, β) dθ (3.18)

=

(

N

n

)

· Γ(α+β)

Γ(α) Γ(β)
· Γ(α+n) Γ(β+N−n)

Γ(α+β+N)
(3.19)

Just like for the binomial distribution, there is a recurrence relation that can be used to

compute the probabilities for successive values of n:

BetaBin(n + 1 |N, α, β) =
N − n

n + 1
· α + n

β + N − n− 1
· BetaBin(n |N, α, β) (3.20)

Summing these probabilities in ascending order of n yields the cumulative distribution. The

method described in section 3.4.4 can be modified accordingly, yielding a Beta-binomial coding

scheme.

Binomial and Beta-binomial codes are used e.g. in chapter 7 as part of a compressor for

multisets of binary sequences.

4The Gamma function can be regarded a continuous generalisation of the factorial function, with k! =
Γ(k + 1) = k ·Γ(k). The Beta distribution gets its name from the Beta function B(α, β) = Γ(α)Γ(β)/Γ(α+β),
as B(α, β)−1 is the normalising constant of the Beta distribution.
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3.4.6 Multinomial code

The K-dimensional multinomial distribution is a generalisation of the binomial distribution

to trials with K possible outcomes. It is parametrized by the number of trials N , and by a

discrete probability distribution Q over the K possible values. A draw from a multinomial dis-

tribution is a K-dimensional vector n = (n1 ... nK) over positive integers, whose components

sum to N . The probability mass function of the multinomial distribution is:

Mult(n1 ... nK |N, Q) = N !
K∏

k=1

Q(k)nk

nk!
(3.21)

Interfacing a multinomial distribution to an arithmetic coder is not as straightforward as with

distributions over integers, because the coding domain is vector-valued and may have a large

state space. Each possible vector must map to a coding region, which requires fixing some

total ordering over vectors. The approach recommended here is to encode n by decomposing

it into a series of simpler coding steps, preserving optimality.

The technique described here exploits a decomposition property of the Multinomial distribu-

tion:

N !

K∏

k=1

Q(k)nk

nk!
=

(

(N − n1)! ·
K∏

k=2

1

nk!

(
Q(k)

1−Q(1)

)nk

)

· N !

n1! (N−n1)!
Q(1)n1 (1−Q(1))N−n1 (3.22)

As a consequence of this property, the Multinomial distribution can be factorised as follows:

Mult(n1 ... nK |N, Q)

= Binomial(n1 |N, Q(1))

· Mult

(

n2 ... nK

∣
∣
∣
∣
∣
N−n1,

Q(2)

1−Q(1)
...

Q(K)

1−Q(1)

)
(3.23)

This equation can be applied recursively to decompose the multinomial distribution over n

into a component-wise product of binomial distributions:

Mult(n1 ... nK |N, Q) =
K∏

k=1

Binomial

(

nk

∣
∣
∣
∣
∣
Nk,

Q(k)

1−∑j<k Q(j)

)

(3.24)

where Nk =
(

N −∑k−1
j=1 nj

)

=
(
∑K

j=k nj

)

are the remaining trials. This factorisation may

also be expressed using domain restriction (defined in section 3.5.2):

Mult(n1 ... nK |N, Q) =
K∏

k=1

Binomial
(

nk

∣
∣
∣Nk, Q\{<k}(k)

)

(3.25)

Based on this insight, a basic multinomial coding method can process n sequentially and

encode each nk using a binomial code, such as the one described in section 3.4.4.
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Infinite limit

It is worth pointing out that the multinomial coding method described here works even when

K = ∞. This “infinomial distribution” is defined exactly like the multinomial distribution

in (3.21), except that it has a countably infinite number of components. It is still parametrised

by a finite number of trials N ∈ N, but the number of possible outcomes is now infinite, i.e. the

distribution Q has support over a countably infinite set.

To encode an infinomial vector n, the same algorithm can be used. Equation (3.24) applies

just like in the finite case, and once Nk reaches zero the computation may safely stop since

all remaining factors are then equal to 1.

3.4.7 Dirichlet-multinomial code

Just like the multinomial distribution generalises the binomial distribution to trials with K

possible outcomes, the Dirichlet-multinomial compound distribution generalises the Beta-

binomial distribution. The distribution arises from integrating out Q from a multinomial

distribution, assuming that Q itself is Dirichlet distributed.

The K-dimensional Dirichlet distribution defines a probability for discrete distributions over K

possible values, and is parametrized by a K-dimensional concentration vector α = (α1 ... αK).

It is therefore a distribution over distributions, defined as follows:

Dir(Q |α) =
Γ(
∑

k αk)
∏

k Γ(αk)
·
∏

k

Q(k)αk−1 (3.26)

The Dirichlet distribution is a multivariate generalisation of the Beta distribution, as can be

seen from equations (3.17) and (3.26).

The probability mass function of the Dirichlet-multinomial can be obtained as follows:

DirMult(n |N, α) =
∫

Mult(n |N, Q) ·Dir(Q |α) dQ (3.27)

=
N !

∏

k nk!
· Γ(A)
∏

k Γ(αk)
·
∫
∏

k

Q(k)nk+αk−1 dQ (3.28)

=
N ! Γ(A)

Γ(N + A)
·
∏

k

Γ(nk + αk)

nk! Γ(αk)
, (3.29)

where A = (
∑

k αk), and the components of n are non-negative integers that sum to N .

Just like with the multinomial distribution, a decomposition property can be used to split
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the Dirichlet-multinomial distribution into a product:

DirMult(n1 ... nK | (α1 ... αK) , N)

= BetaBin(n1 |N, α1, A−α1)

· DirMult(n2 ... nK | α2 ... αK , N−n1)

(3.30)

This equation can be applied recursively to decompose the Dirichlet-multinomial distribution

over n into a component-wise product of Beta-binomial distributions:

DirMult(n1 ... nK | α1 ... αK , N) =
K∏

k=1

BetaBin



nk

∣
∣
∣
∣
∣
∣

(

αk,
K∑

j=k+1

αj

)

, N −
k∑

j=1

nj



 (3.31)

One can therefore compress n by sequentially encoding each component nk using the Beta-

binomial code from section 3.4.5.

Multinomial and Dirichlet-multinomial codes are used in chapter 5 for compressing unordered

structures, such as multisets.

3.4.8 Codes for infinite discrete distributions

This section outlines approaches for using arithmetic coding with distributions over countably

infinite sets. Such distributions include e.g. the Poisson, geometric, and negative binomial

distributions. The primary difficulty of interfacing an infinite discrete distribution to a finite-

precision coder is the handling of the infinite set of elements.

Without loss of generality, suppose we want to encode natural numbers n ∈ N with some

known distribution P . Using the natural ordering, each element n could conceptually be

mapped to [PΣ(n), P +
Σ (n)) in the unit interval. But these regions cannot be discretized into

any finite range of integers, as would be required for use with a finite-precision arithmetic

coder.

One solution is to factorise P in such a way that each factor involves a choice between a finite

number of regions: in such a case the number of factors is generally unbounded and depends

on n.

There are several ways in which such a factorisation can be made. For example, each n can

be represented as a sequence of binary decisions of the form ‘Is it k?’ for all k from 0 to n:

P (n) =
n∏

k=0

Bernoulli(1[k =n] | θk), where θk =
P (k)

P ({0, ..., k−1}). (3.32)

This scheme could be viewed as a generalisation of the unary code for integers from sec-

tion 2.2.1: instead of using Bernoulli choices of bias 1
2
, it uses Bernoulli choices of biases θk

as shown in equation (3.32).
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This method encodes each natural number n with an expected number of log2 P (n)−1 bits,

the Shannon information content of n under P . However, the process may be computationally

inefficient for many choices of P , as the number of coding steps grows linearly with n. If the

distribution P has heavy tails, or distant high mass elements, this could introduce long waits.

This inefficient behaviour can be reduced by arranging the elements in descending order of

probability mass, decreasing the average number of coding steps per element; but ultimately,

the fact that the sequence of coding steps has a unary structure can be a computationally

limiting factor for many choices of P .

Of course, many other factorisations are possible whose suitability depends on P . It should

be noted that a fixed-precision arithmetic coder cannot faithfully encode choices below a

probability mass of 2−R, where R is the coder’s current coding range. The factors must

therefore be chosen such that its probabilities lie sufficiently above the limiting threshold.

Another approach to this problem might be to ignore elements whose probability is below a

certain threshold; and treat the occurrence of such low-probability events as an error condition.

3.5 Combining distributions

Probabilistic models can be constructed by combining simpler distributions. This section

describes coding techniques for some common ways in which probability distributions can be

combined.

3.5.1 Sequential coding

Recall from section 3.2 that the sequential arithmetic encoding of symbols x1 ... xN with

associated probability distributions P1 ... PN produces a final region whose implied probability

mass corresponds to the product of the individual symbol probabilities:

P (x1 ... xN ) =
N∏

n=1

Pn(xn). (3.33)

If we want to arithmetically encode a multivariate vector (x1 ... xN) for which only the joint

distribution is known, we may have to factorise the distribution into marginal and conditional

distributions first. For example, a distribution over two variables can be factorised in two

ways:

Pr(x, y) = Pr(x) · Pr(y | x) = Pr(y) · Pr(x | y) (3.34)

To encode values x and y according to their joint distribution, one could first encode x with

the marginal distribution Pr(x) and then encode y with the conditional distribution Pr(y | x).
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This construction preserves optimality and always works, but requires a coding method for

the marginal and conditional distributions.

It can help to choose the marginal: sometimes Pr(x | y) is easier to encode than Pr(y | x).

If conditional distributions are difficult to compute, but the marginals are not, it might be

tempting to use only the marginals: i.e. coding x with Pr(x), then y with Pr(y). While using

such an encoding still allows (x, y) to be reconstructed, the wrongly assumed independence

of x and y may incur a bandwidth cost.5

More generally, factors in a probabilistic model turn into sequential coding steps. The order

of the steps must be such that each step depends only on information that has already

been encoded, so that the decoder can reconstruct each conditional distribution in the same

order. Which marginals or conditionals are chosen does not matter, and can be chosen for

computational convenience.

3.5.2 Exclusion coding

One particular form of conditional distribution is a value exclusion or domain restriction,

where a subset R of values is excluded from the choice:

P (x | x 6∈ R) =
P (x 6∈ R | x) · P (x)

P (x 6∈ R)
=

1[x 6∈ R] · P (x)

1− P (R)
(3.35)

This conditional distribution is well defined as long as P (R) < 1. We’ll abbreviate this

conditional distribution P\R:

P\R(x) =







0 x ∈ R
P (x)

1− P (R)
otherwise

(3.36)

Sampling from P\R is the same as sampling from P and rejecting values x ∈ R. (Of course

there may be more efficient ways to sample from P\R than rejection sampling.)

Encoding or decoding values x under a conditional distribution of the above kind is called

exclusion coding. For data compression algorithms, exclusion coding can be a useful tool for

several reasons:

1. It provides a simple way to incorporate knowledge into an existing model that certain

values cannot occur, saving otherwise wasted information.

2. It preserves the relative proportions of probability mass of non-excluded elements, and

5For example, consider the distribution Pr(x, y) = 1[x = y] where x and y take values in {0, 1}. The
marginal distributions are Pr(x) = Pr(y) = 1

2 . Encoding a tuple (x, y) with Pr(x) · Pr(y | x) costs 1 bit,
whereas coding x and y independently with Pr(x) and Pr(y) costs 2 bits.
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can be used as a mathematical tool to encode components of multivariate distributions.

Such use occurred e.g. in section 3.4.6, equation (3.25).

3. Domain restrictions can be used to replace a mixture model with a computationally fa-

vourable alternative, by enforcing the domains of the mixture components to be disjoint.

Separating the mixture components in this way lowers the cost of encoding and decoding.

Value exclusions are used implicitly in some data compression algorithms, for example in the

PPM algorithm by Cleary and Witten (1984a) and many of its variants. PPM algorithms and

their corresponding probabilistic models are covered in detail in chapter 6.

3.5.3 Mixture models

A mixture model combines a finite or countable number of distributions according to a mixing

distribution. For example, consider a family of distributions D1 ... DK over some space X ,

and a discrete distribution Θ over the index set {1 . . . K}, to define a mixture distribution M :

M(x) = Pr(x |Θ, D1 ... DK) =
K∑

k=1

Θ(k) ·Dk(x) (3.37)

The distribution Θ is called the mixing distribution. Sampling from M is easy: first draw an

index k from Θ, then draw a value x from the kth component distribution Dk (and throw

away k). To obtain the probability mass M(x) of an outcome x, the contributions of each

component distribution Dk must be summed (unless the sum has a closed form).

To arithmetically encode a value x with a mixture distribution M , discrete region boundaries

must be computed, for example by using the mixture’s cumulative probability MΣ(x).

If the mixing distribution Θ changes more frequently than the component distributions Dk,

it may help to compute MΣ(x) as follows:

MΣ(x) =
K∑

k=1

DkΣ(x) (3.38)

where the cumulative component distributions DkΣ can be cached to speed up the computa-

tion.



Chapter 4

Adaptive compression

The previous chapter reviewed how arithmetic coding can be used for compressing sequences of

symbols whose distributions are known. However, in most practical compression applications,

the distributions aren’t known in advance. In such cases, adaptive techniques are useful:

these methods compress sequences while simultaneously learning their symbol distributions.

Building on techniques from the previous chapters, this chapter presents several basic adaptive

compression methods that find use in later algorithms. Finally, the chapter motivates the work

on context-sensitive models and structural compression.

4.1 Learning a distribution

4.1.1 Introduction

Suppose we’d like to compress a sequence of symbols x1 ... xN from a finite symbol alphabet

where each xn is independent and identically distributed (iid) according to some unknown

distribution D, and the goal is to minimise the expected length of the compressed output.

Because D is unknown, there is no other option than using different distributions Qn for

compressing the symbols: the closer these guessed distributions Qn are to the unknown D,

the better will be the compression effectiveness.1

Although the latent distribution D is initially unknown, every symbol xn of the sequence

conveys some information about it: adaptive compression methods exploit this information

to construct estimates Qn of D from the previous symbols x1 ... xn, and uses Qn to compress

the next symbol xn+1. If done correctly, the estimated distributions Qn will adapt to the

1The expected penalty for encoding a D-distributed symbol with the wrong distribution Q is KL(D ||Q)
nats (Cover and Thomas, 1991, Theorem 5.4.3), where KL denotes the relative entropy, or Kullback–Leibler
divergence (Kullback and Leibler, 1951). 1 nat equals (ln 2)−1 bits.

61
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input data and converge to the true distribution D. One of the benefits of using arithmetic

coding is that a different distribution can be used for every symbol in the sequence, at little

additional cost.

4.1.2 Motivation

Why would we need to encode symbols from an unknown distribution? As a motivational

example, consider a sequence of English text. An empirically determined distribution over

letters in English was published by Norvig (2013), working from the Google Books N -gram

corpus that includes millions of English language books (Michel et al., 2011). This distribution

is shown in Figure 4.1.

However, even if the true global symbol distribution were known, the symbol distribution

of any particular document is likely to differ from the global average. For example the

distribution of symbols in this thesis, shown in Figure 4.2, is visibly different from Norvig’s

average.

Yet another motivation is that many sequences may be written in a language other than

English, or may not be human language data at all. In the absence of prior knowledge, it is

both elegant and useful to learn the distribution from the data itself.

Note. The adaptive compression methods presented in this chapter focus on learning a single

symbol distribution for each input sequence. Chapter 6 discusses generalisations that learn

not just one global symbol distribution, but many context-dependent distributions; these

distributions differ massively from the mean shown in Figure 4.1, and are likely to be more

distinctive to each input sequence.

4.2 Histogram methods

4.2.1 A simple exchangeable method for adaptive compression

Adaptive compression techniques encode each symbol in a sequence with a probability distri-

bution derived from the previous symbols in the sequence. Commonly, the probability that

the N+1st symbol xN+1 equals a given value x is defined as a function of the number of times

x was observed in the preceding sequence x1 ... xN .

Let’s assume that the sequence x1 ... xN was generated by making independent draws from

an unknown symbol distribution D over a symbol alphabet X . One way of adaptively com-

pressing such a sequence is to encode each symbol with a distribution that approximates D



4.2. HISTOGRAM METHODS 63

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

E T A O I N S R H L D C U M F P G W Y B V K X J Q Z

Letter frequencies according to Norvig (2013)

Figure 4.1: Symbol frequencies of English text, as measured by Norvig (2013) using the
Google Books N -gram corpus (Michel et al., 2011). Uppercase and lowercase letters have
been merged and all other symbols removed.
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Figure 4.2: Symbol frequencies in this thesis. For ease of comparison, the symbols are
presented in the same order as in Figure 4.1.
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from the occurrences of the preceding symbols, for example as follows:

Pr(xN+1 = x | x1 ... xN) =
#[xn = x]Nn=1 + 1

N + T
(4.1)

Here, T = |X | is the total number of symbols in the alphabet, and #[xn = x]Nn=1 denotes the

number of times symbol x appears in sequence x1 ... xN , satisfying:

#[xn = x]Nn=1 =
N∑

n=1

1[xn = x] and
∑

x∈X
#[xn = x]Nn=1 = N. (4.2)

Noting that arithmetic coding makes it easy to use a different distribution for each symbol,

equation (4.1) can be interfaced to an arithmetic coder in straightforward fashion. Computing

the required cumulative symbol distributions may be slightly more elaborate than for static

compression, as the coding distribution changes for every symbol; to mitigate this problem,

designated dynamic data structures exist that provide access to cumulative symbol counts at

much reduced computational cost (Fenwick, 1993, 1995; Moffat, 1999).

Exchangeability. The information content of a sequence whose elements are independent

and identically distributed (iid) does not depend on the order of the symbols. The compressed

output length produced by an appropriately derived compression method should therefore also

be order-invariant. This property holds for the adaptive compression scheme described above.

Sampling an infinite sequence from the stochastic process defined in (4.1) produces a random

symbol distribution D, where D ∼ Dirichlet
(

α = (1, 1, ... , 1
︸ ︷︷ ︸

|X |

)
)

.

More generally, the output length of an adaptive compressor is order-invariant if the com-

pressor’s underlying stochastic process produces infinitely exchangeable sequences. The re-

lationship between exchangeable sequences and conditional independence given some latent

variable is characterised in the theorem of de Finetti (1931).

Many existing adaptive compression methods do not satisfy this exchangeability property, for

example the move-to-front encoder described in section 2.4.1, and most smoothing methods

based on backing-off (described in chapter 6). There are many ways of designing adaptive

compression algorithms, and each such method may embed different assumptions about the

unknown symbol distribution. But any method whose compression effectiveness depends on

the order of the symbols in the sequence necessarily violates the assumption that the symbols

are independent and identically distributed according to an unknown symbol distribution.

(Of course, making an iid assumption is not reasonable for many kinds of input sequence,

including human text.)

The adaptive compression scheme defined in equation (4.1) is a simple instance of a histogram-

building method, and a special case of the urn scheme by Blackwell and MacQueen (1973).

Several other popular (and mostly non-exchangeable) histogram-building methods exist; an
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extensive survey can be found in the report by Chen and Goodman (1998). Many of these

methods have been applied to data compression.

4.2.2 Dirichlet processes

The histogram-building method described in the previous section gives each symbol an initial

count of 1. These initial counts constitute one way of ensuring that every symbol has a

non-zero probability of occurrence, and that the distribution over symbols starts out uniform.

This basic approach can be generalised by allowing an arbitrary base distribution G, and in-

troducing a strength parameter α that controls how quickly the base distribution is influenced

by empirical symbol counts. A sequential form of this generalised approach can be written as

follows:

Pr(xN+1 = x | x1 ... xN) =
#[xn = x]Nn=1

N + α
+

α

N + α
G(x) (4.3)

where α is the strength parameter, and G is the base distribution. A common choice for G

might be a uniform distribution over the symbol space X , but any discrete distribution can be

used (including distributions with infinite support). The parameter α controls the blending

of the empirical distribution with the base distribution G: high values of α give more weight

to G, whereas low values of α let the empirical distribution dominate.

Theoretical background. The stochastic process defined by sequential application of the

conditional distribution (4.3) corresponds to the urn schemes of Blackwell and MacQueen

(1973), Hoppe (1984), and the Chinese restaurant process of Aldous (1985).2 Sequences

produced from such an urn are infinitely exchangeable, and the symbol distribution obtained

from (4.3) as N → ∞ is called a Dirichlet process (Ferguson, 1973). An introduction to

Dirichlet processes can be found in e.g. Walker et al. (1999), Ghosh and Ramamoorthi (2002),

and Teh (2010).

It is possible to construct hierarchical Dirichlet processes by letting G itself be a symbol

distribution distributed according to a Dirichlet process prior. Hierarchical Dirichlet processes

and mechanisms for learning the latent base distributions are described by Teh et al. (2006).

4.2.3 Power-law variants

The urn scheme described in section 4.2.2 can be generalised to variants that induce power-law

behaviour. Two such variants are presented below, each involving the addition of a discount

parameter β.

2The original form of the Chinese restaurant process (CRP) describes partition structures (sequences of
cluster indices c1 ... cN , or “table assignments”), rather than sequences of elements x1 ... xN . Equation (4.3)
can be obtained from Aldous’ CRP by sampling an element xc ∈ X for each cluster index c, and mapping the
sequence of indices c1 ... cN to the sequence of elements xz1

... xzN
.
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The first variant is an instance of ‘interpolated Kneser–Ney smoothing’ as defined by Chen

and Goodman (1998). It may also be called a two-parameter Chinese restaurant process in

which no two tables can serve the same dish. The sequential construction of a sequence with

such a distribution extends equation (4.3) as follows:

Pr(xN+1 = x | x1 ... xN) =
nx − β

N + α
1[nx > 0] +

α + βUN

N + α
G(x), (4.4)

where UN is the number of unique symbols in x1 ... xN , and nx abbreviates #[xn = x]Nn=1. The

factor 1[nx > 0] ensures that the discount β is only applied to symbols that have occurred at

least once. Construction (4.5) is used, for example, in the hierarchical context compressors

BPPM and UKN-Deplump that are described in sections 6.5 and 6.6.4.

The second variant (which is closely related to the first) is the standard two-parameter Chinese

restaurant process, which is a sequential construction for the Pitman–Yor process:

Pr(xN+1 = x | x1 ... xN , t) =
nx − txβ

N + α
+

α + βT

N + α
G(x) (4.5)

When viewed as a generative sampling procedure, nx counts how many (out of N) times x

was generated in the preceding sequence x1 ... xN , and tx counts how often (out of those nx

times) x was generated from G as opposed to from the first component. The quantity T is the

sum of the tx for all x ∈ X . Note that unlike the n, the latent t cannot be deterministically

computed from x1 ... xN , as their values depend on external randomness. However, the t

can be marginalised out using stochastic inference procedures; methods for doing this are

described by e.g. Teh (2006b).

The Pitman–Yor process is described by Perman (1990); Perman, Pitman and Yor (1992) and

Pitman and Yor (1995);. and given its name by Ishwaran and James (2001).

The generalisation to hierarchical Pitman–Yor processes eventually led to the Sequence Mem-

oizer model by Wood et al. (2009, 2011), which has been applied to compression by Gasthaus

et al. (2010), and Bartlett and Wood (2011). The Sequence Memoizer and its relation to the

PPM algorithm are discussed in section 6.6.

4.2.4 Non-exchangeable histogram learners

Many other learning mechanisms exist that construct a symbol histogram (or any collection of

symbol occurrence counts) to approximate the true symbol distribution. Many such methods

can be found in the report by Chen and Goodman (1998). Some of these also have discount

parameters, and some also exhibit power-law behaviour. Examples of such constructions

include some of the escape methods of the PPM algorithm (Cleary and Witten, 1984a), which

are described in section 6.3. Unlike the Pitman–Yor process, however, these constructions do



4.3. OTHER ADAPTIVE MODELS 67

not generally define exchangeable stochastic processes.

One may argue that exchangeability isn’t always important in practice, as few sequences

consist of symbols that are independent and identically distributed. However, models that

produce exchangeable sequences are much easier to combine and reason about than their non-

exchangeable counterparts, facilitating flexible engineering with more predictable results.

4.3 Other adaptive models

The adaptive models from section 4.2 can learn an underlying symbol distribution P of any

sequence whose symbols are independent and identically distributed according to P . These

adaptive models are similar in that their mechanism of learning involves building an explicit

histogram of symbol occurrences. But there are other ways of constructing adaptive models,

and one such alternative is the Pólya tree method discussed below.

Many of the algorithms from chapter 2 are also adaptive, and their learning mechanisms may

involve the construction of something other than a histogram, such as a ranked list (e.g. by

move-to-front encoders) or a dictionary. Figure 4.3 compares the compression effectiveness

of various adaptive models on a pseudo-randomly generated sequence of independent and

identically distributed symbols (from a random symbol distribution).

4.3.1 A Pólya tree symbol compressor

The methods from section 4.2 assign probability mass to symbols based on a histogram of

previous symbol occurrences. The histogram can be represented as a collection of integer

counts n, one for each symbol x in the alphabet X . An alternative method is now presented

that does not build an explicit representation of a histogram, but still defines an exchangeable

process.

The Pólya tree method uses a balanced binary search tree whose leaf nodes contain the

symbols of the alphabet X , such that each symbol x ∈ X can be identified by a sequence

of (at most ⌈log2|X |⌉) binary branching decisions from the root of the tree. The tree has

K = |X | − 1 internal nodes (labelled with integers k = 1, ... , K−1), each containing a value

θk that represents the probability of choosing between its two children.

The probability of a given symbol x is then defined as the product of the probabilities of the

branching decisions taken to reach x from the root:

P (x) =
∏

k ∈ PATH(x)

Bernoulli(bk | θk) (4.6)

where PATH(x) denotes the set of nodes k that lie on the path from the root to x, and
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Figure 4.3: This plot shows the compression effectiveness of various adaptive compression
methods on a sequence of pseudo-random symbols, drawn iid from a random symbol distri-
bution P . The start of the sequence is shown between the two graphs. P was sampled from a
Pitman–Yor process with concentration α = 16 and discount β = 1

2
, and with a uniform base

distribution over a set of 64 symbols { , !, 0–9, A–Z, a–z}. A histogram of P is shown in the
graph at the top.
Some adaptive compression methods learn the underlying symbol distribution more rapidly
than others, and converge to a better compression rate more quickly.

The programs compress, gzip, bzip2, and LZMA are described in chapter 2. MTF is a move-to-front encoder

(as described in 2.4.1), followed by an adaptive model that learns the integer indices (sec. 4.2.1). The line

labelled LZW is my own implementation of the LZW algorithm, using unlimited memory and arithmetic coding.

CPLS is an implementation of the histogram learner from section 4.2.1, using a cumulative probability lookup

structure in the spirit of Fenwick (1995). CRP is a histogram learner using a Pitman–Yor process as described

in section 4.2.3. Polya Tree is an implementation of the Pólya tree symbol learner described in section 4.3.1.

An index of all algorithms can be found in appendix A.
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bk ∈ {0, 1} identifies the branching decision at node k for reaching x. This construction

is called a discrete domain Pólya tree (Ferguson, 1974; Lavine, 1992; Mauldin et al., 1992).

Any discrete distribution P over X can be expressed by choosing appropriate node biases θk

in (4.6). An example is shown in Figure 4.4.
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Figure 4.4: A Pólya tree representing a distribution over
the alphabet X = {A, B, C, D} as a sequence of weighted
binary choices. The distribution described by this tree has
Pr(A) = Pr(B) = Pr(C) = 1

3
and Pr(D) = 0. The values

shown in the shaded nodes represent the probability of
following the node’s 0-branch.

With a Pólya tree representation of a distribution P , a P -distributed symbol x can be arith-

metically encoded as the sequence of branching decisions that identifies x, where each bk is

encoded with Bernoulli code of bias θk. This method requires knowing the θk (and hence P ).

Consider now the case that P is unknown. The Pólya tree compressor can be made adaptive

by adding a mechanism that learns the node biases from the data. A Bayesian way of deriving

such a learning mechanism is to place priors on the node biases, for example θk ∼ Beta(α, β),

and use Bayes’ rule to obtain a posterior distribution over θk given the branching decisions

(at node k) of all previous symbols that traversed node k.

Due to the conjugacy of the Beta and Bernoulli distributions, the posterior distributions over

the θk are still Beta distributions. Furthermore, the biases θk can be integrated out to give a

Beta-Bernoulli compound distribution of the form:

BetaBernoulli(bk | α, β) =
∫

Bernoulli(bk | θk) · Beta(θk | α, β) dθk (4.7)

=

(

α

α + β

)1−bk
(

β

α + β

)bk

(4.8)

= Bernoulli

(

bk

∣
∣
∣
∣
∣

α

α + β

)

(4.9)

A definition of the Beta distribution can be found in equation (3.17). Given a local history of

M branching decisions b
(1)
k ... b

(M)
k at node k, the predictive probability of the next branching

decision b
(M+1)
k is given by:

BetaBernoulli
(

b
(M+1)
k

∣
∣
∣ α, β, b

(1)
k ... b

(M)
k

)

= Bernoulli



b
(M+1)
k

∣
∣
∣
∣
∣
∣

α + m
(0)
k

α + β + M



, (4.10)

where m
(0)
k

def
= #

[

b
(m)
k =0

]M

m=1

(

and m
(1)
k

def
= M −m

(0)
k

)

(4.11)
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The quantity m
(0)
k counts how many of the M node traversal followed the 0-branch, and m

(1)
k

counts those that followed the 1-branch.

To implement an adaptive Pólya tree compressor, it is sufficient to store m
(0)
k and m

(1)
k at

each node k. Compression results of such an implementation (with α = β = 1
2

for all nodes)

are included in the comparison of Figure 4.3. The asymptotic behaviour of adaptive Pólya

tree compressors is identical to that of the adaptive histogram building methods. However,

the Pólya tree model may learn certain probability distributions more quickly, for example

distributions whose probability mass is similar for groups of symbols that are located closely

together in the tree. Such distributions commonly arise in e.g. multilingual text documents

in Unicode, where the occurrence of symbols of one script (such as Latin, Greek, Cyrillic,

Arabic, traditional Chinese, etc.) often means that more symbols of the same script are likely

to follow. Adaptive Pólya tree compressors can be constructed over the Unicode alphabet

(which has designated blocks of adjacent code points for the symbols of different scripts),

and can be made hierarchical in similar fashion as the more traditional histogram-building

models can. However, this idea is not pursued further in this thesis, and the remainder of

this chapter focuses on the more widely known histogram-building methods.



4.4. ONLINE VERSUS HEADER-PAYLOAD COMPRESSION 71

4.4 Online versus header-payload compression

Sections 4.2 and 4.3 introduced adaptive compression methods for sequences of independent

and identically distributed symbols, that gradually learn the symbol distribution online while

the sequence is being compressed. This section compares such adaptive online methods with

header-payload methods, in which the optimal symbol distribution is computed and commu-

nicated to the receiver first, and then the sequence is sent in a way that exploits that optimal

distribution.

Examples of header-payload methods include compressors that use Huffman coding and trans-

mit the optimal Huffman tree before sending the data. Such a technique is used in e.g. the

DEFLATE algorithm (see section 2.3.2), where Huffman coding is used to compress the output

of the LZ77 stage, and the Huffman tree is transmitted in the form of a compressed set of

code word lengths.

Some people might say that either approach has merits and drawbacks; that learning the

distribution gradually means that the first symbols are encoded ineffectively, and that the

header-payload method is suboptimal because of redundancy between the header and the pay-

load. But both views are incorrect: a correctly implemented online method doesn’t transmit

the early symbols ineffectively – it conveys them using exactly the required bandwidth given

the receiver’s uncertainty. Secondly, as will be shown in section 4.4.2, the header-payload

method can be done in a way that achieves the optimal compressed length, too.

How can these strategies be implemented correctly? How should one optimally encode a

known symbol distribution? And which approach is better? Answers to these questions yield

useful insights for optimal encoding of multisets, lengths and orderings.

For concreteness, consider a sequence of N characters x1 ... xN drawn iid from a distribution

P over a finite symbol alphabet X . The probability of this sequence, given N and P , is:

Pr(x1 ... xN | P, N) =
N∏

n=1

P (xn) (4.12)

The aim of any adaptive compressor is to learn the unknown distribution P and use this

knowledge to compress the sequence x1 ... xN . I will present two alternative approaches for

solving this problem, each derived from first principles.

4.4.1 Online compression

The approach of online compression is to encode the sequence one symbol at a time, gradually

learning the original distribution P . Encoding one symbol at a time corresponds to factorising
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the joint probability of the sequence as follows:

Pr(x1 ... xN |N) =
N∏

n=1

Pr(xn | x1 ... xn−1) (4.13)

The distribution over each xn embodies our belief over P , taking into account the symbols of

the preceding sequence:

Pr(xn | x1 ... xn−1) =
∫

Pr(xn | P ) · Pr(P | x1 ... xn−1) dP (4.14)

The gradual learning of P can be done through Bayesian inference, using a suitable prior for

P . For example, a Dirichlet prior is a convenient choice:

Pr(P |α) =
Γ(A)

∏

x∈X Γ(αx)
·
∏

x∈X
P (x)(αx−1) (4.15)

Here α is a |X |-length parameter vector, and A is the sum of all αx. The posterior distribution

of P , given observations x1 ... xn−1, is:

Pr(P |α, x1 ... xn−1) =
Γ(A + (n− 1))

∏

x∈X Γ
(

αx + #[xk = x]n−1
k=1

) ·
∏

x∈X
P (x)(αx−1+#[xk=x]n−1

k=1
) (4.16)

Integrating out P , we recover the familiar looking closed-form solution3 for the conditional

distribution over xn:

Pr(xn = x |α, x1 ... xn−1) =
αx + #[xk = x]n−1

k=1

A + n− 1
(4.17)

This result is useful, because it gives a fast, incremental way of computing the predictive

distribution over the next symbol. To get the probability mass of symbol xn, it is sufficient

to count the number of times it occurred before, add a fixed value αx, and do a division.

The counts can be stored in an array of size |X |, which is easy to query and update. Indeed,

algorithms operating according to equation (4.17) have existed for a long time.4

To conclude, let’s substitute equation (4.17) back into equation (4.13), to obtain the joint

distribution over the entire sequence, as induced by the online compression method:

Pr(x1 ... xN |α, N) =
N∏

n=1

αxn
+ #[xk = xn]n−1

k=1

A + n− 1
(4.18)

This distribution is optimal in the sense that the coding of each symbol makes best use of all

available knowledge from the preceding sequence.

3The predictive distribution (4.17) generalises (4.1), and is generalised by (4.3) and (4.5).
4Parameters αx are sometimes set to 1 for all x ∈ X : this special case is also known as the rule of succession

or the Laplace estimator (Laplace, 1814).
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4.4.2 Header-payload compression

An alternative method for encoding a sequence of independent and identically distributed

symbols is to transmit (an approximation of) the distribution P first, and then use it to opti-

mally code the source symbol sequence. Encoding P first clearly costs some bandwidth. This

might seem wasteful at first glance, especially when the symbol sequence is short: consider

for example the case N = 1, where only one symbol needs transmitting, or N = 0, encoding

an empty sequence.

To make matters worse, encoding P exactly is not even possible technically, as a distribution

is not generally a finite object (even when its support is a discrete finite alphabet).5 Certainly,

header-payload compression can be done badly; many header-payload compression methods

waste bits by sending redundant information. But header-payload compression can be done

optimally.

The key realisations are that for optimal encoding and decoding of a finite input sequence, a

finite approximation of P is sufficient, and that the sequence can be encoded using not that

fixed approximation, but an approximation that adapts appropriately as the sequence is sent.

The amount of precision needed for this approximation depends on N , the sequence length.

If we know that the length of the sequence is N , we can instead, for each symbol x in

the alphabet X , count the number of times it occurs in the sequence, written N (x), where
∑

x∈X N (x) = N . Let’s call the collection N of these counts the symbol histogram of the

sequence. For any finite sequence of known length, the distribution of symbols is fully captured

by N .

The header-payload compression idea is to decompose the joint probability of the sequence as

follows:

Pr(x1 ... xN |N) = Pr(N |N) · Pr(x1 ... xN | N ) (4.19)

This factorisation separates the sequence’s histogram from its permutation. Due to the con-

ditional independence of these two components, a compressor could encode the histogram

N first (conditional on the length), followed by the symbol permutation (conditional on the

histogram).

Encoding methods for each of these two tasks are derived below. First, I will show how a

symbol sequence x1 ... xN can be encoded optimally, assuming its symbol histogram N is

known. Then I will describe an optimal coding scheme for the histogram N itself, assuming

N is known.

5For example, consider a distribution over two symbols {A,B} with Pr(A) = 1
ξ

and Pr(B) = ξ−1
ξ

, where

ξ is an arbitrary irrational number greater than 1. Encoding an exact representation of this distribution
involves encoding an exact representation of ξ, which may require transmitting an arbitrarily large amount
of information.
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Optimal encoding of the symbol permutation

This section discusses how to encode the input sequence x1 ... xN when its symbol counts N
are known. If we did this näıvely using a fixed ‘optimal’ distribution, then information would

be wasted, since each symbol tells us something about the remaining symbols.

For example, consider the case of an input sequence of 100 symbols, of which 99 are A,

and exactly 1 is B. The state of this sequence is captured entirely by the position of the B

symbol. From the point of view of a decoder that processes the sequence symbol by symbol,

the moment B is decoded marks the point at which no further information is needed, as all

remaining symbols must be A.

Similarly, consider a sequence of N unique symbols. The symbol xn at the nth position in

this sequence is optimally encoded as a choice between the N − n remaining symbols, since

those which have occurred now have zero probability mass.

In general, an arbitrary sequence x1 ... xN with histogram N can be optimally encoded by

encoding each symbol xn sequentially, taking into account the preceding sequence:

Pr(xn = x | N , x1 ... xn−1) =
N (x)−#[xk = x]n−1

k=1

N − n + 1
(4.20)

This is a strike-one-off approach: after a symbol is encoded, its count is decremented by one,

improving the prediction of the remaining symbols.

The total probability of the entire sequence then becomes:

Pr(x1 ... xN | N ) =
N∏

n=1

Pr(xn | N , x1 ... xn−1) (4.21)

=
N∏

n=1

N (xn)−#[xk = xn]n−1
k=1

N − n + 1
(4.22)

=
1

N !

N∏

n=1

(

N (xn)−
n−1∑

k=1

1[xk = xn]

)

(4.23)

The product can be rewritten to range over the symbol alphabet rather than the sequence

positions, yielding the following concise form:

Pr(x1 ... xN | N ) =
1

N !

∏

x∈X
N (x)! (4.24)

This is the probability mass given to the sequence’s symbol permutation, given that its symbol

histogram N is known. It remains to be shown how to encode N .
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Optimal encoding of the symbol histogram

If the input sequence x1 ... xN is unknown, and its N symbols are independently distributed

according to P , then the symbol histogram N is a multinomially distributed random variable:

Pr(N | P, N) = N !
∏

x∈X

P (x)N (x)

N (x)!
(4.25)

Unfortunately, P itself is unknown. As before, we can place a Dirichlet prior over P :

Pr(P |α) =
Γ(A)

∏

x∈X Γ(αx)
·
∏

x∈X
P (x)(αx−1) = Dir(P ; α) (4.26)

where α is a |X |-length parameter vector, and A is the sum of all αx. The Dirichlet distri-

bution is a conjugate prior to discrete finite distributions, and can be used to learn P from a

finite number of symbol observations or counts. Furthermore, it is possible to integrate out P :

∫

Pr(N | P, N) · Pr(P |α) dP = Pr(N |α, N) (4.27)

yielding a compound Dirichlet-multinomial distribution, ranging over |X |-length vectors of

non-negative integers N (x) that sum to N :

Pr(N |α, N) =
N ! Γ(A)

Γ(N + A)

∏

x∈X

Γ(N (x) + αx)

N (x)! Γ(αx)
(4.28)

This distribution gives a direct connection between the histogramN and the hyper-parameters

α of the Dirichlet prior. The task of representing the distribution over symbol histograms for

a given sequence length is thereby solved.

A Dirichlet-multinomial coding technique was described in section 3.4.7.

4.4.3 Which method is better?

The previous two sections derived two alternative approaches for compressing a finite se-

quence (of known length) from a stationary source: online compression and header-payload

compression. Both approaches involve learning the unknown symbol distribution P ; in the

online method, this happens gradually (symbol by symbol) by addition to counts, and in the

header-payload method it happens all at once and is then gradually “unlearned” by subtrac-

tion from counts. This section proves that these two approaches are in fact both optimal and

have identical compression effectiveness.

Under the header-payload method, the joint distribution of the sequence is obtained by com-
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bining equations (4.24) and (4.28):

Pr(x1 ... xN ,N |α) =

(

N ! Γ(A)

Γ(N + A)

∏

x∈X

Γ(N (x) + αx)

N (x)! Γ(αx)

)

· 1

N !

∏

x∈X
N (x)! (4.29)

The N ! factor cancels, as do theN (x)! factors, leaving the joint distribution under the header-

payload method at:

Pr(x1 ... xN ,N |α) =
Γ(A)

Γ(N + A)

∏

x∈X

Γ(αx +N (x))

Γ(αx)
(4.30)

Under the online compression method, the joint distribution of the entire sequence was given

in equation (4.18), quoted again here:

Pr(x1 ... xN |α, N) =
N∏

n=1

αxn
+ #[xk = xn]n−1

k=1

A + n− 1
(4.18)

This formula can be put into a more convenient form by pulling the denominator out of the

product, reparametrizing the product to range over the symbols of the alphabet (rather than

indices of the sequence), and rewriting both in terms of Gamma functions:

Pr(x1 ... xN |α, N) =
Γ(A)

Γ(N + A)

N∏

n=1

αxn
+ #[xk = x]n−1

k=1 (4.31)

=
Γ(A)

Γ(N + A)

∏

x∈X

Γ(αx +N (x))

Γ(αx)
(4.32)

Equations (4.30) and (4.32) are equal, which means that both approaches, when implemented

with arithmetic coding, compress the input sequence x1 ... xN to the same number of bits.

4.5 Summary

This chapter introduced basic compression techniques for compressing sequences of indepen-

dently and identically distributed symbols6 whose symbol distribution isn’t known in ad-

vance. These adaptive methods learn the unknown distribution from the sequence that is

being communicated; this learning process is carried out identically by the compressor and

the decompressor.

Adaptive methods are building blocks for context-sensitive sequence compressors (such as

those from the PPM family), which are covered in detail in chapter 6.

Finally, the learning process of some adaptive models can be carried out in two ways: either

adaptively, learning the distribution one symbol at a time, or in header-payload fashion, send-

6The information theory literature sometimes refers to such sequences as “sequences from a stationary
memoryless source”.
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ing sufficient statistics of the symbol occurrence counts first, followed by the ordering of the

sequence (conditional on the counts). Both approaches are mathematically equivalent. The

header-payload approach separates the sequence into a symbol multiset and a permutation,

each of which can be compressed independently. Multisets and permutations are combinato-

rial structures that differ from sequences. The following chapter derives probabilistic models

and compression algorithms for a variety of fundamental combinatorial objects, and motivates

a theory of structural compression.
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Chapter 5

Compressing structured objects

This chapter presents techniques for compressing structured combinatorial objects, such as

sets and multisets. Understanding the structural properties of the data we seek to compress is

crucial for good compression. There are several basic structural objects other than sequences,

some of them fundamental mathematical constructs, which have been given little attention

in the compression literature. This chapter is devoted to them.

5.1 Introduction

Most data processed by electronic systems today are of a sequential nature (or are forced

into sequential form), and the most common methods of data compression map sequences to

shorter sequences in a lossless fashion. The processing of sequences is particularly straight-

forward with contemporary computers due to the sequential processing of instructions.

Due to the ubiquity of sequential data, it may appear that most objects have a natural

sequential representation, like books or DNA sequences, but this is not generally true. Counter

examples include 2-dimensional pictures, unordered entries in a database, the set of valid

words in a language (for a spell checker), the histogram of letter occurrences in a document,

the tree-like organisation of a file system, or the arrangement of atoms in a molecule.

Flattening structured objects into sequential representations is a common activity of computer

scientists. The resulting sequences can be viewed as encodings that preserve the (desirable)

information of the objects, allowing them to be reconstructed later. In data compression, we

care not only about preserving all of the object’s information in the sequence, but also about

making the sequence as short as possible. This second requirement can be difficult to achieve

for objects for which a sequential representation is perhaps not a natural choice.

As an example, consider the task of storing a set of N elements, where N is known to the

receiver. A simple sequential representation can be created by writing out the N elements of

79
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the set in some order. While a decoder can reconstruct the set perfectly from this sequential

description, this encoding is wasteful, because each set can be described by N ! different

sequences all representing the same set. The problem is, of course, that any such sequence

stores a particular permutation of this set’s elements, rather than storing only its elements

(without the ordering). Bandwidth is wasted communicating information that isn’t actually

needed.

How much bandwidth is wasted exactly? There are N ! ways of ordering N unique items,

which means that we could potentially save log2(N !) bits ≈ (N · log2(N) −N/ loge 2) bits if

the items can be encoded without communicating an order. As a concrete example, suppose

we have a collection of 100 000 words of 8 letters each, and each letter has 8 bits. Storing

the words näıvely in a sequence (with no separators, as they all have a fixed length) costs

800 kB. The amount of information spent on the order in which the words were sent equals

log2(100 000!) bits ≈ 1 516 704 bits ≈ 189 588 bytes ≈ 190 kB. This means that roughly 23%

of the information in the file is wasted on the ordering.

Existing approaches

The difficulty of finding dense sequential representations for combinatorial objects has been

acknowledged in the literature and various methods have been suggested.

One line of thought is bits-back coding, which puts wasted bandwidth to good use by filling

it up with additional data. In the example of a set of N elements, one could send along

additional information by picking one of the N ! possible permutations in a way that depends

on other data. The idea of bits-back coding is described by Frey and Hinton (1997), Hinton

and Zemel (1994), and Hinton and van Camp (1993). The bits-back approach is elegant, and

can produce compactly coded representations when it has other useful data available to “plug

the gaps” with. However, it doesn’t really provide a solution to the problem of compactly

encoding only the desired object.

Another relevant approach is enumerative coding (Cover, 1973). An enumerative coder com-

presses sequences from a constrained set S by mapping any element s ∈ S to a natural

number ns from 0 to |S|−1 in an efficient manner. The object’s number ns can be stored

compactly using an appropriate code for integers. An enumerative coder has to be derived

for any given set S. Enumerative coders produce dense uniform encodings for elements of the

set they were designed for. Examples given by Cover include the subset of bit strings that

have a fixed number of 1-bits, and the set of permutations of N integers. Further information

on enumerative coding is given by e.g. Cleary and Witten (1984b) and Öktem (1999).

Much more generally, Varshney and Goyal (2006a,b, 2007) motivate a source coding theory

for sets and multisets. They discuss factorising sequences into multiset and permutation,
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and give examples where this is useful. Their generative model for multisets draws elements

iid from a discrete distribution, recognising the rôle of the multinomial distribution and of

order statistics. Furthermore, they derive theoretical results and limits regarding achievable

compression rates of multiset codes. However, they do not give concrete algorithms.

Outline

This chapter introduces structural compression techniques for permutations, combinations,

compositions and other combinatorial objects. These techniques form part of a structural

compression toolbox from which novel compression algorithms (and sampling algorithms)

can be built. Relations between the structures and corresponding compression techniques are

highlighted.

Any compression algorithm implicitly defines a probabilistic model over the objects it com-

presses. The compression is only effective if the assumptions made by this underlying model

are appropriate. For all compression techniques in this chapter, these assumptions are stated

explicitly in the form of a probabilistic model. The resulting compression algorithms derived

from the model are optimal if the assumptions are met.

For each type of combinatorial object, probabilistic models were carefully selected to match

plausible and conceptually simple generative processes.

All of the techniques presented in this chapter, except where stated, are original work.

Notation primer

This chapter makes extensive use of multisets. A multiset M is an orderless collection of

elements in which elements may occur multiple times. The notation x ∈ M means that an

element x is contained in M at least once; and the multiplicity function M(x) denotes the

exact number of times x occurs.

The cardinality of M is written |M|, and counts the total number of elements including

repetitions:

|M| =
∑

x∈M
M(x) (5.1)

The additive union of two multisets R andM is written R⊎M, and describes the multiset

composed of all elements of R and all elements ofM, such that (R⊎M) (x) =M(x)+R(x)

for all x.
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5.2 Permutations

Define a permutation to be an ordered arrangement of a known multiset of symbols. For

example, there are 6 possible permutations of the set {A, B, C}:

(A, B, C) (A, C, B) (B, A, C) (B, C, A) (C, A, B) (C, B, A)

and 3 possible permutations of the multiset {X, X, Y}:

(X, X, Y) (X, Y, X) (Y, X, X)

Note that in contrast to what the above notation might suggest, a permutation itself contains

no information about symbols or their occurrence counts: it just specifies an arrangement

of symbols for a given multiset. This property distinguishes permutations from sequences:

a sequence is a multiset plus a permutation of that multiset.

This section discusses how to encode a permutation optimally.

5.2.1 Complete permutations

Suppose we have a permutation (x1 ... xN ) of a multisetM. The length N of the permutation

is equal to the number |M| of elements in the multiset. LetM(x) denote the number of times

a given element x occurs inM, where |M| =
∑

x∈X M(x) = N .

There are exactly
|M|!

∏

x∈X M(x)!
(5.2)

such permutations of M. A uniform distribution over permutations of M therefore assigns

to each permutation x1 ... xN the following probability mass:

Pr(x1 ... xN | M) =
1

|M|!
∏

x∈M
M(x)! (5.3)

As was shown in section 4.4.2, this distribution can be factorised as follows:

Pr(x1 ... xN | M) =
N∏

n=1

Pr(xn | M, x1 ... xn−1) (5.4)

=
N∏

n=1

M(xn)−∑n−1
k=1 1[xk = xn]

N − n + 1
, (5.5)

yielding a component-wise encoding that is easy to interface to an arithmetic coder. Code

listing 5.1 shows an encoding and decoding procedure based on this method.
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Coding algorithm for permutations

ENCODING DECODING

Input: M, N , x1 ... xN

1. For each symbol xn (for n← 1 to N):

A. Compute S(xn)←
∑

x<xn

M(x).

B. storeRegion(S, S +M(xn), |M|).
C. Update M←M\ {xn :1}.

Input: M, N Output: x1 ... xN

1. For each symbol xn (for n← 1 to N):

A. Compute t←getTarget(|M|).
B. Find xn ∈M such that

S(xn) ≤ t < S(xn) +M(xn).

C. loadRegion(S, S +M(xn), |M|)
D. Output xn.

E. Update M←M\ {xn :1}.

Code listing 5.1: Encoding and decoding algorithms for permutations (or truncated per-
mutations), given advance knowledge of the symbol histogram. The multiset M summarises
the symbol occurrences of the permutation x1 ... xN . The function S(x) computes the cu-
mulative symbol count ofM (for some fixed ordering of the input alphabet X ). The update
step M ← M \ {xn : 1} reduces the count of element xn by one. The external functions
storeRegion, loadRegion and getTarget interface to an arithmetic coder, as specified in
section 3.3.

Alternative methods

Methods for enumerating permutations are well known, e.g. through the work of Lehmer

(1958), who provides two algorithms: rank(x1 ... xN ), which maps a permutation to its

lexicographic index k, and the inverse algorithm unrank(k), which maps the index back to a

permutation.

Once a permutation’s lexicographic index k is known, the index can be encoded uniformly,

e.g. with an arithmetic coder:

storeRegion(k, k+1, factorial(N));

This method gives a non-sequential uniform encoding for permutations, but it is computa-

tionally impractical due to its explicit computation of the factorial.1

A good survey on permutations is given in (Knuth, 1998), and further details are given in

(Knuth, 2004).

1For example, a 64-bit integer cannot represent N ! for any N > 20.
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5.2.2 Truncated permutations

The permutations discussed so far were all of length |M|, obtained by drawing a sequence

of elements fromM without replacement until no elements are left. More generally, suppose

that we draw a sequence of elements from M without replacement, but we stop after K

draws. The result is a truncated permutation x1 ... xK of length K, called a K-permutation.

(And K should be ≤ |M|.)

The probability of drawing a given K-permutation fromM is:

Pr(x1 ... xK |K,M) =
(|M| − |K|)!
|M|!

∏

x∈M

M(x)!

(M(x)−K(x))!
(5.6)

where K is the submultiset of M summarising how often any given value x occurs in the

sequence x1 ... xK .

To encode or decode a truncated permutation, the same technique can be used as for complete

permutations, but stopping after K symbols. The algorithm encodes each K-permutation

optimally, i.e. with length proportional to the logarithm of its occurrence probability. For

truncated permutations, the occurrence probability isn’t uniform, except when M contains

no repetitions, or when K = |M|.

5.2.3 Set permutations via elimination sampling

A way of generating permutations of unique elements can be defined through an incremental

process of sampling with elimination from a discrete distribution D. Each time an element is

drawn from an elimination sampling process on D, it is eliminated and can never be sampled

again. Such a process produces sequences of unique elements from the support of D; the

uniqueness property makes these sequences permutations of a set (rather than a multiset).

The difference from other sampling schemes can be explained as follows. Consider an urn that

contains balls of various colours. Sampling with replacement draws a ball, notes its colour

and places the ball back in the urn. Sampling without replacement draws a ball, notes its

colour and throws the ball away. Sampling with elimination draws a ball, notes its colour

and removes all balls of that colour from the urn. For any urn scheme, sampling must finish

when no balls are left in the urn. When sampling with elimination is applied to a discrete

distribution D over some set X , the urn will be empty after each unique value has been drawn.

Suppose a sequence of values x1 ... xK is obtained by making K consecutive draws from D

with elimination, where K ≤ |X |. The result is a permutation of K unique values of X , whose

ordering is influenced by the probability mass of each element.
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Formally, the distribution over such permutations x1 ... xK is:

Pr(x1 ... xK |D) =
K∏

k=1

D\{x1 ... xk−1}(xk) (5.7)

where D\R denotes the distribution that derives from D by excluding a subsetR of its domain;

this notation is defined in section 3.5.2. A permutation obtained through an elimination

sampling process can be optimally compressed using exclusion coding. The first element x1

is encoded with probability mass D(x1), the second element with probability mass D\{x1}(x2)

and the third with D\{x1,x2}(x3), etc.

Note that sequential draws from this elimination sampling process are not generally exchange-

able: different permutations of the same elements may have different probability mass. The

permutation with least probability mass is produced by drawing the least probable element

at every step. In the special case that D is a uniform distribution, every permutation has

equal probability mass of 1
|X |! .

5.3 Combinations

Permutations can be viewed as fixed-length sequences generated by drawing elements from a

given multiset without replacement. If the order of a permutation is thrown away, the result

is a combination. A combination is a way of choosing a fixed-size multiset from a known

larger multiset.

Given a multiset M, any K-sized submultiset K ⊆M is called a K-combination of M. One

can think of a K-combination as a K-permutation without the ordering. (K-permutations

were defined in section 5.2.2.)

For example, there are 4 possible 2-combinations of the multiset {A, B, B, C}:

{A, B} {A, C} {B, B} {B, C}

Compare this to the 7 possible 2-permutations of the same multiset:

(A, B) (A, C) (B, A) (B, B) (B, C) (C, A) (C, B)

When K-combinations are created by randomly drawing K elements from a multisetM with

repetitions, the resulting distribution is not generally uniform. For instance, in the example

given above, the chance of drawing combination {B, C} is higher than drawing {A, C}. An

extensive treatment of algorithms for generating combinations is given by Knuth (2005a).

One way of computing the probability mass of a given K-combination K drawn fromM is to

sum up the probability masses of all K-permutations ofM whose occurrence counts match K.
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We know the number of permutations for any given multiset K equals:

|K|!
∏

x∈KK(x)!
(5.8)

We also know from equation (5.6) that the probability mass of a K-permutation drawn from

M is order-invariant and depends only on its occurrence counts K(x). Summing up the

probabilities of all K-permutations therefore reduces to the product of the right hand side of

equation (5.6) and the quantity (5.8).

The probability of a given K-combination K, drawn from a multiset M, is therefore:

Pr(K |M) =
(|M| − |K|)! |K|!

|M|! ·
∏

x∈K

M(x)!

(M(x)−K(x))! K(x)!
(5.9)

=

(

|M|
|K|

)−1

·
∏

x∈K

(

M(x)

K(x)

)

(5.10)

In the case when M is a strict set, i.e. M(x) = 1 for all x ∈ M, the expression reduces to a

uniform distribution, as all valid combinations K are then equally likely.

To derive a compression method for K-combinations, the distribution in (5.9) and (5.10) can

be factorised into univariate distributions that interface more easily to an arithmetic coder.

These univariate distributions should range over quantities that can be easily computed from

K, such as the component multiplicities K(x). One suitable approach can be derived from

the quotient of two nested combinations:

Pr(K |M)

Pr
(

K\{x}
∣
∣
∣M\{x}

) =

(

|M|
|K|

)−1(|M| −M(x)

|K| − K(x)

)(

M(x)

K(x)

)

= Pr(K(x) | M, |K|) (5.11)

whereM\{x} is shorthand for the multisetM with all occurrences of x removed. This insight

suggests the following recursive factorisation:

Pr
(

K
∣
∣
∣M

)

= Pr
(

K(x)
∣
∣
∣M, |K|

)

· Pr
(

K\{x}
∣
∣
∣M\{x}

)

(5.12)

Any K-combination that’s distributed according to (5.9) is therefore optimally encoded with

a component-wise sequence of univariate arithmetic coding steps, using equation (5.12). I will

call this coding technique a multiset combination code.

5.4 Compositions

An integer composition of a natural number N is a sequence of non-negative integers (n1 ... nK)

that sum to N . It is common to impose further constraints on such compositions, for example

by requiring each component nk to be non-zero (in strictly positive compositions), or by
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limiting the permitted number of components to a fixed number K (in K-compositions).

Strictly positive compositions find use in the encoding of ordered multiset partitions (described

in section 5.6), and K-compositions can be used to concisely represent the structure of a

multiset of known size and domain (described in section 5.5).

5.4.1 Strictly positive compositions with unbounded components

Call a composition strictly positive when all of its components are non-zero. For any positive

integer N , there are exactly 2N−1 strictly positive integer compositions.2 For example, there

are eight strictly positive compositions of the number 4:

(4) (3, 1) (2, 2) (2, 1, 1)

(1, 3) (1, 2, 1) (1, 1, 2) (1, 1, 1, 1)

For a uniform distribution over strictly positive compositions (of a given N), the following

method provides an optimal encoding scheme: for each component nk in order, write (nk−1)

1-bits, followed by a 0-bit (except for the last component nK , whose 0-bit is omitted). This

method encodes any composition using exactly N − 1 bits.

5.4.2 Compositions with fixed number of components

A composition (n1 ... nK) with K components is called a K-composition of N . The components

of a K-composition may be zero or positive integers, and must sum to N . For example, there

are fifteen 3-compositions of the number 4:

(4, 0, 0) (3, 1, 0) (0, 3, 1) (2, 2, 0) (2, 1, 1)

(0, 4, 0) (3, 0, 1) (1, 0, 3) (2, 0, 2) (1, 2, 1)

(0, 0, 4) (1, 3, 0) (0, 1, 3) (0, 2, 2) (1, 1, 2) .

For a given N , the total number of possible K-compositions equals:

CK(N) =

(

N + K − 1

K − 1

)

=
(N + K − 1)!

N ! (K − 1)!
(5.13)

If N and K are known, how does one optimally compress a K-composition of N? The next

two subsections present two alternative answers.

2Proof: the unary representation of N is a sequence of N 1-digits. There are N − 1 gaps between the
unary digits, and 2N−1 ways of writing either a plus (+) or a comma (,) into each gap. Each configuration
corresponds to one unique strictly positive composition of N .
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5.4.3 Uniform K-compositions

Assuming that we want the choice to be uniform, we should assign each K-composition a

probability mass of:

Pr(n1 ... nK |N, K) =
N ! (K − 1)!

(N + K − 1)!
(5.14)

One way of building such a coding scheme is to enumerate all CK(N) of the K-compositions,

find the index c of the chosen composition in that list, and encode c as a uniform integer

between 0 and CK(N)− 1. The decoder can recover the chosen K-composition by generating

the same list, decoding integer index c and looking up position c in the list.

An alternative is to encode the K-composition n component-wise, in such a way that the

resulting probability is still uniform. This is not as easy as it might first appear: for example,

encoding each component nk with a discrete uniform distribution over the allowed range of

remaining values will give a non-uniform and order-dependent result.

Component-wise encoding can be done correctly by following the recursive structure of the

composition. The number of possible K-compositions depends on the value of n1. For ex-

ample, if n1 = N , then the remaining components n2 ... nK must be zero. More generally,

when n1 is fixed, the remaining components can form exactly CK−1(N − n1) valid (K−1)-

compositions. We can assign probability mass to each possible value of n1 in proportion to

the number of compositions that can be formed from the remaining components, resulting in

the following probability for n1:

Pr(n1 |N, K) =
CK−1(N − n1)

CK(N)
(5.15)

Applying this rule recursively yields a general expression for the probability mass of the kth

component, conditional upon the preceding components:

Pr(nk | n1 ... nk−1, N, K) =
CK−k(N −∑k

j=1 nj)

CK−k+1(N −
∑k−1

j=1 nj)
(5.16)

This form lends itself to a simple sequential encoding procedure that can be interfaced to an

arithmetic coder. Observe that the joint probability of n1 ... nK equals the probability mass

given in (5.14), so the result is indeed uniform.

5.4.4 Multinomial K-compositions

A uniform distribution over K-compositions may not be a natural choice. For example, con-

sider a generative process in which N outcomes x1 ... xN are drawn from a uniform distribution

over the values {1 . . . K}. The N outcomes can be summarised by a histogram (n1 ... nK)

that indicates how often each of the K possible outcomes occurred. The components nk sum

to N , so the histogram (n1 ... nK) forms a K-composition.
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K-compositions obtained this way are clearly not uniformly distributed. Instead, their prob-

ability mass is given by a multinomial distribution. For N elements drawn from a discrete

uniform distribution over K elements, the K-composition has probability:

Pr(n1 ... nK |N, K) =
N !

KN
·

K∏

k=1

1

nk!
(5.17)

This distribution can also be factorised into a component-wise encoding, giving:

Pr(n1 ... nK |N, K) =
K∏

k=1

Pr(nk | n1 ... nk−1, N, K) (5.18)

=
K∏

k=1

(

N−∑k−1
j=1 nj

nk

)

·
(

1

K−k+1

)nk
(

K−k

K−k+1

)N−
∑k

j=1
nj

(5.19)

These expressions can be generalised to the case where the N draws are made from any

discrete distribution P over integers {1 . . . K}. A K-composition created this way has the

following distribution:

Pr(n1 ... nK |N, K, P ) = N ! ·
K∏

k=1

P (k)nk

nk!
(5.20)

And it factorises into a product of binomial distributions, as shown in section 3.4.6:

Pr(n1 ... nK |N, K, P ) =
K∏

k=1

Binomial
(

nk

∣
∣
∣
∑K

j=k nj , P\{<k}(k)
)

(5.21)

This result defines an optimal sequential encoding / decoding procedure for multinomial

compositions, using the binomial code from section 3.4.4. This multinomial composition code

forms the basis of several of the multiset coding techniques in section 5.5.

5.5 Multisets

Multisets can be viewed as a natural generalisation of sets, in which elements are allowed to

occur more than once. For example, the multiset {A, B, B} is the collection which contains

one occurrence of symbol A and two occurrences of symbol B. The same multiset may also be

written {A :1, B :2}.

Just as set membership can be viewed as a function of type X → {0, 1}, multisets have an

associated multiplicity function of type X → N indicating the number of times any given

element occurs. The notation M(x) denotes the number of times x occurs in multiset M.

For compatibility with set notation, x ∈M means M(x) > 0, and x 6∈ M means M(x) = 0.
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The cardinality of a multiset is defined as:

|M| =
∑

x∈X
M(x). (5.22)

Multisets occur naturally in data compression: for example, the histogram of letter occur-

rences in a document is described by a multiset. Many advanced compression methods ac-

cumulate symbol counts for each of a large collection of contexts – each context effectively

stores a multiset. It is therefore interesting to investigate how multisets themselves can be

compressed.

In contrast to a sequence, a multiset contains no information about the order of the symbols

it contains. It was shown in section 4.4 that a sequence can be split into a multiset and

a permutation, and how these two components can be compressed separately in an effective

way. This section elaborates on the compression of multisets, given various different generative

assumptions.

The approaches presented here arithmetically encode a multisetM by first sending its cardi-

nality |M|, and then its occurrence counts M(x) for all x ∈ X , conditional on |M|.

5.5.1 Multisets via repeated draws from a known distribution

One way of creating a multiset is by drawing its elements iid from some discrete distribution D.

Suppose that D ranges over a finite set of elements X . We could form a multiset of size N by

taking N independent samples x1 ... xN from D. Let the size N be distributed according to

some chosen distribution L over positive integers. The generative process for such a multiset

M can be written as follows:

N ∼ L (5.23)

x1 ... xN
iid∼ D (5.24)

and creating M :=
N⊎

n=1

{xn} (5.25)

where ⊎ denotes multiset-union. Because D is discrete, elements xn drawn from it can repeat

with non-zero probability. M(x) counts how often any given value x occurred in the N draws

x1 ... xN from D. The sum of occurrences equals N = |M|.
This generative model assigns to any multiset M the probability mass of:

Pr(M | L, D) = L(|M|) · |M|! ·
∏

x∈M

D(x)M(x)

M(x)!
(5.26)

The occurrence counts M(x) form a |X |-composition of |M|, for any total ordering on X .

This suggests the following optimal encoding (and decoding) procedure for a multiset of this
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kind:

1. Encode (or decode) |M| using a code for the size distribution L.

2. For some fixed ordering on M, encode (or decode) the counts M(x) using the multi-

nomial composition code (from section 5.4.4) with parameters K = |X |, N = |M| and

prior D.

This method is optimal assuming that the coding method for L is optimal. Its operation

requires X to be a finite and enumerable set.

5.5.2 Multisets drawn from a Poisson process

A Poisson process can be viewed as a special case of the model presented in the previous

section. Poisson processes model the size of the multiset with a Poisson distribution:

|M| ∼ Poisson(λ) (5.27)

where λ ∈ R
+ is a non-zero rate parameter. The Poisson processes used here are parametrised

by a rate λ and the discrete distribution D over X , and assign probability mass to multisets

M as follows:

Pr(M |D, λ) =
e−λλ|M|

|M|! · |M|! ·
∏

x∈M

D(x)M(x)

M(x)!
(5.28)

The Poisson distribution isn’t an arbitrary choice: its use gives the resulting multiset par-

ticularly nice properties, especially when it comes to encoding. General arguments for the

usefulness and ubiquity of Poisson processes are given by Kingman (1993).3

Of course the sampling, encoding and decoding procedures from the previous section can

be used as before. But exploiting a property of Poisson processes, one can derive a simpler

encoding / decoding method.

Observe that the Poisson distribution distributes over the product in the multinomial distri-

bution:

e−λλ|M|

|M|!
︸ ︷︷ ︸

Poisson(λ)

· |M|!
∏

x∈X

D(x)M(x)

M(x)!
︸ ︷︷ ︸

Mult(|M|,D)

=
∏

x∈X

e−λD(x)λM(x)D(x)M(x)

M(x)!
︸ ︷︷ ︸

Poisson(λ·D(x))

(5.30)

3Poisson processes are typically constructed over continuous measures µ which have no atomic components.
In that case elements do not repeat (with probability 1), and the multinomial selection factor reduces to |M|!,
giving the more familiar form:

Pr(M | µ, λ) =
e−λ λ|M|

|M|! ·
∏

x∈M

µ(x)M(x) (5.29)

In a compression setting, however, pretty much all interesting measures are atomic, as non-atomic (zero-mass)
elements cannot be represented with a finite number of bits.
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This is because:
∏

x∈X
e−λD(x) = e−λ (5.31) and

∏

x∈X
λM(x) = λ|M|. (5.32)

Therefore each M(x) is individually Poisson distributed:

M(x) ∼ Poisson(λD(x)) (5.33)

A Poisson-process-distributed multisetM can therefore be conveniently encoded and decoded

with the following algorithm:

1. For each x ∈ X in some predetermined sequential order, independently encode (or

decode) M(x) using a Poisson code with mean λD(x).

A nice consequence of this choice of representation is that it’s easily possible to store submul-

tisets: one only needs to encode M(x) for those x one cares about. It can also be used to

store a finite submultiset when X and D are countably infinite.

5.5.3 Multisets from unknown discrete distributions

So far we’ve created multisets by making repeated draws from a distribution D, assuming

that D is known to both the encoder and decoder. Let’s now assume that a multiset M is

created by drawing from an unknown distribution D with a discrete finite domain X . As in

section 4.4, we’ll model the uncertainty of D with a Dirichlet distribution:

D ∼ Dir(α)

x1 ... xN
iid∼ D

(5.34)

where α is an |X |-dimensional Dirichlet parameter vector. The number of elements N is

again distributed according to some independent distribution L over positive integers.

Integrating out D from the product of equation (5.26) and the Dirichlet prior, the probability

of multiset M becomes:

Pr(M | L, α) = L(|M|) ·
∫

Mult(M |D) ·Dir(D |α) dD (5.35)

= L(|M|) · |M|! Γ(A)

Γ(|M|+ A)

∏

x∈X

Γ(M(x) + αx)

M(x)! Γ(αx)
(5.36)

where A is the sum of the components of α. The result is a product of a compound Di-

richlet-multinomial distribution over M’s occurrence counts, and the distribution of M’s

size.
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The multisetM, conditional on α and L, can then be encoded by first sending its length using

a code for L, and then an |X |-length vector of counts M(x) using a Dirichlet-multinomial

code (such as the one described in section 3.4.7).

5.5.4 Submultisets

We considered generative processes for multisets in which elements were drawn iid from some

distribution. Drawing iid means sampling with replacement, which makes the multiplicities

in the resulting multiset representative of the source distribution.

A multiset can also arise as a submultiset of a larger multiset M. Consider the following

generative process: to obtain a random submultiset K ⊆ M of given size K, draw elements

uniformly from M without replacement. [The idea is superficially similar to drawing a per-

mutation of M (like in section 5.2), which is obtained by repeatedly removing from M at

random and recording the order. This time we don’t care about the order.]

The resulting draws, when taken as an unordered collection, form a K-combination of M,

and can be compressed optimally using the multiset combination code of section 5.3.

5.5.5 Multisets from a Blackwell–MacQueen urn scheme

As an alternative to forming a multiset by drawing elements iid from some probability dis-

tribution, let’s consider drawing elements from the urn scheme of Blackwell and MacQueen

(1973). This urn scheme produces exchangeable sequences of elements such that the resulting

distribution over elements is a Dirichlet process (as introduced in section 4.2.2).

A Dirichlet process prior (DP prior) can be viewed as an infinite-dimensional generalisation

of the Dirichlet distribution, and can be used to learn distributions with domains that are

countably infinite. The Blackwell–MacQueen construction works as follows:

xN+1 | x1 ... xN ∼ α

N + α
H(x) +

N∑

n=1

1

N + α
δxn

(5.37)

where α is a concentration parameter and H is a base distribution. The joint distribution of

the next K draws from this urn scheme, conditional upon the previous N draws, is

Pr(xN+1 ... xN+K |H, α; x1 ... xN ) =
K∏

k=1

Pr(xN+k |H, α; x1 ... xN+k−1) , (5.38)

which simplifies to:

=
K∏

k=1

(

#[xm = xN+k]N+k−1
m=1

N + k − 1 + α
+

α

N + k − 1 + α
H(xN+k)

)

(5.39)
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=
(N − 1 + α)!

(N + K − 1 + α)!
·

K∏

k=1

(

#[xm = xN+k]N+k−1
m=1 + αH(xN+k)

)

(5.40)

=
Γ(N + α)

Γ(N + K + α)
·
∏

x∈X

Γ(αH(x) +N (x) +K(x))

Γ(αH(x) +N (x))
. (5.41)

Because sequences from the Blackwell–MacQueen urn are infinitely exchangeable, the joint

probability (5.41) depends only on the multisets N and K that summarise the element oc-

currences in the subsequences (x1 ... xN ) and (xN+1 ... xN+K), respectively:

N (x)
def
= #[xn = x]Nn=1

K(x)
def
= #[xN+k = x]Kk=1

(5.42)

where N =
∑

x∈X N (x) and K =
∑

x∈X K(x). Just as the counts N are sufficient statistics of

the urn’s history, the K are sufficient statistics of the urn’s future (for the next K elements).

We will now derive the distribution over K given N (and DP prior parameters α and H).

Equation (5.41) gives the joint probability mass of a sequence of the next K draws. We can

marginalise out the order of the sequence by summing over all permutations: the probability

of the multiset {xN+1 ... xN+K} equals the sum of the probabilities of all sequences that can

be formed from the multiset’s elements.

Because the joint probability of each permutation depends only on the multisets N and K,

all permutations (of any fixed K) have equal mass, and the sum turns into a simple product:

Pr(K |K, H, α; x1 ... xN ) =
K!

∏

x∈X K(x)!
· Pr(xN+1 ... xN+K |H, α; x1 ... xN ) . (5.43)

The factor in front of the right hand side of equation (5.43) is the multinomial coefficient,

i.e. the total number of possible permutations as given by equation (5.2). Combining equa-

tions (5.41) and (5.43) yields the following distribution over K:

Pr(K | N, K, H, α) =
K! · Γ(N + α)

Γ(N + K + α)
·
∏

x∈X

Γ
(

αH(x) +N (x) +K(x)
)

K(x)! · Γ
(

αH(x) +N (x)
) (5.44)

This result can be used to compress multisets K whose underlying distribution is partially

known (through N and base distribution H).

However, to compress such a multiset with an arithmetic coder, the multivariate distribu-

tion (5.44) must be factorised into a product of univariate distributions. Fortunately, the

probability of K can be split into probabilities of each count K(x) for each x ∈ X in some

predetermined order, conditioned on all counts preceding the current one. This approach is

similar to the Dirichlet-multinomial coding scheme of section 3.4.7. Each of the conditional

distributions depends on the following known quantities: the remaining elements Rx from X ,
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the remaining number of draws Rk not yet accounted for, and quantities derived from the

counts N . In particular, Rn is the sum of allN (x) for those x in Rx. Similarly, Ax = Rx∪{x}
and Ak = Rk +K(x).

Pr
(

K(x)
∣
∣
∣Rx, Rk, Rn, H, α,N

)

=
Ak!

Rk! K(x)!
·

Γ
(

αH(x) +N (x) +K(x)
)

Γ
(

αH(x) +N (x)
)

·
Γ
(

αH(Ax) + Rn

)

Γ
(

αH(Ax) + Rn + Rk

) ·
Γ
(

αH(Rx) + Rn + Rk

)

Γ
(

αH(Rx) + Rn

)

(5.45)

Observe that the structure of equation (5.45) corresponds closely to that of equation (5.44).

A convenient component-wise sequential encoding is thereby established.

5.6 Ordered partitions

An ordered partition of a multiset M is a sequence of submultisets A1 ... AK whose additive

union equals M:
K⊎

k=1

Ak = M (5.46)

For example, there are eight possible ordered partitions of the multiset {•, •, ◦}:

{•}, {•}, {◦} {•, •}, {◦} {•, •, ◦}
{•}, {◦}, {•} {•, ◦}, {•}
{◦}, {•}, {•} {•}, {•, ◦}

{◦}, {•, •}

Ordered partitions can be seen as a natural hybrid of a sequence and a multiset, where

some order information of a collection of elements is preserved, and some is not. An ordered

partition with only one block of size |M| corresponds to a normal multiset, and an ordered

partition with |M| blocks of size 1 corresponds to a normal sequence.

Compressing an ordered partition, givenM, can be done by combining techniques developed

in earlier sections. A suitable algorithm could work as follows:

(I) Encode the sequence of block sizes |A1| ... |AK | where the number K of blocks may be

known or unknown in advance. Since the sum of the |Ak| equals |M|, the sequence of

block sizes form a composition of |M| and can be encoded using any of the composition

codes from section 5.4.
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(II) Sequentially encode each block Ak of the partition. For each Ak, it is true that:

Ak ⊆ M\
⊎

j<k

Aj (5.47)

Therefore each block Ak can be encoded as an |Ak|-sized submultiset of the remaining

elements, using the multiset combination code of section 5.3. Note that no bits are

used for the last block, as it has probability 1.

The procedure can be amended depending on what information is available to the encoder

and decoder in advance. For example:

• If the sequence of block sizes |A1| ... |AK | of the ordered partition is known in advance,

both encoder and decoder can skip directly to step (II).

• If just the multiset of block sizes {|A1|, ···, |AK|} is known in advance, the encoder only

needs to transmit its permutation, e.g. using the permutation coder from section 5.2.

• If only K is known, a K-composition code can be used in step (I), such as the one from

section 5.4.3. If K is unknown, it can either be transmitted separately using a discrete

code over integers {1, · · ·, |M|}, or encoded implicitly using the uniform composition

code given at the beginning of section 5.4.

A general derivation of the number of multiset partitions is given by Bender (1974). Algo-

rithms for generating sorted and unsorted set partitions can be found in (Knuth, 2005b).

5.7 Sequences

Sequences are perhaps the most widespread and familiar structural form of data on con-

temporary computer systems. Compression methods for sequences are well known: most

compression algorithms in the literature are sequence compressors.

Since data on contemporary computer systems are stored as sequences of bytes, sequence

compressors are in common use and often applied to any type of data found on a computer

system. State of the art sequence models do not generally assume that elements of the se-

quence are independently distributed; typically, a collection of context-dependent conditional

distributions is learned from the data and used to compress subsequent symbols. An analysis

of state of the art sequence compression is described in chapter 6.

Remaining consistent with the spirit of this chapter, this section explores only fundamental

structural properties of sequences, their relations to other combinatorial objects, and gener-

ative processes for producing them.



5.7. SEQUENCES 97

5.7.1 Sequences of known distribution, known length

Let’s assume a finite sequence of elements x1 ... xN is drawn iid from a known discrete

distribution D over some space X . The joint probability of all elements in the sequence is:

Pr(x1 ... xN |N, D) =
N∏

n=1

D(xn) (5.48)

If we want to compress this sequence, assuming that its length N is known in advance to

both the encoder and decoder, the elements can simply be encoded sequentially using a code

for D. Since the elements are independently and identically distributed, the last element of

the sequence is compressed in the same way as the first; the length N and distribution D are

the only useful pieces of information for compressing the sequence, the rest is unpredictable

randomness.

An alternative to the sequential coding method given above is to factorise the sequence into

a multiset and a permutation, each of which can be encoded separately using the structural

compression techniques from earlier parts of this chapter.

Define the multiset M to be the occurrence counts of elements in x1 ... xN :

M(x) = #[xn = x]Nn=1 (5.49)

The total count |M| equals N . Encoding the sequence as multiset and permutation then

works as follows:

1. Encode the multiset M, conditional on N and D (e.g. using the multiset coder from

section 5.5.1).

2. Encode the permutation x1 ... xN conditional on M (e.g. using the permutation coder

from section 5.2).

Both approaches compress the original sequence down to exactly the same number of bits;

they are mathematically equivalent. However, they are not computationally equivalent. The

first approach, encoding the sequence element by element, is computationally faster, and also

easier to implement.

Sequences with known occurrence counts

In the special case that the occurrence counts M of the sequence x1 ... xN are known in

advance to both the encoder and the decoder, only the permutation of the sequence has to

be transmitted. The occurrence counts form a multiset as defined in equation (5.49), and

implicitly determine the sequence length, because |M| = N .
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5.7.2 Sequences of known distribution, uncertain length

If the sequence length N is not known in advance, it has to be transmitted. Assuming that

sequence lengths are distributed according to a distribution L, the probability mass of the

sequence including its length is:

Pr(x1 ... xN |D, L) = L(N) ·
N∏

n=1

D(xn) (5.50)

Here are two equivalent methods for encoding both sequence length and content:

1. Explicit method. Encode N first, using a code for L; then encode x1 ... xN using one

of the approaches of the previous section.

2. Implicit method, using an end-of-file (EOF) symbol. Encode, at each position n in the

sequence, whether the sequence has more symbols or has terminated; and if it continues,

the element xn. The procedure stops when the end of the sequence is reached.

Let z1 ... zN+1 be indicator variables ∈ {0, 1} where zn = 1 means that the sequence has

a symbol at position n, and zn = 0 that there are no more symbols (i.e. N = n−1). If the

sequence length is already known to be longer than n − 1, the probability distribution

of the next indicator zn+1 is:

Pr(zn+1 | L, N ≥ n) =

(

1− L(n)
∑

k≥n L(k)

)zn+1
(

L(n)
∑

k≥n L(k)

)1−zn+1

(5.51)

= Bernoulli
(

zn+1

∣
∣
∣ L\{k|k<n}(n)

)

(5.52)

Observe that Pr(z1 ... zN+1) = L(N). A suitable algorithm for this coding scheme

sends, for each position n in the sequence, zn followed by xn. Each zn is encoded using

a Bernoulli code matching equation (5.52), and each xn is encoded using a code matching

D. After the last element xN has been encoded, the termination marker zN+1 = 0 is

sent.

The explicit method and the implicit method are mathematically equivalent and compress

the sequence and its length down to exactly as many bits as given by the negative log2 of

equation (5.50).

EOF markers are widely used in data compression algorithms, and an example of an implicit

method. Many compression algorithms, rather than modelling L explicitly, treat EOF like an

ordinary symbol of the alphabet, giving the sequence length an implicit probability distribu-

tion matching the occurrence of a yet unseen symbol. Compressors that employ EOF symbols

in such a way include most variants of the PPM algorithm (described in chapter 6).
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5.7.3 Sequences of uncertain distribution

Suppose a sequence x1 ... xN is drawn iid from a discrete distribution D over some space

X , but the D itself is unknown. Various approaches to compressing such a sequence were

discussed in chapter 4. Using the method that was described in section 4.4.1, we can compress

the sequence while adaptively learning D by making Bayesian updates to a Dirichlet prior

using the occurrences of each symbol in the sequence.4 Integrating out D, the following

compact form results:

Pr(xn+1 = x | x1 ... xn, α) =
αx +Mn(x)

A + n
, (5.53)

where α is the |X |-length parameter vector of the Dirichlet prior, A is the sum of its compo-

nents αx, and Mn(x)
def
= #[xk = x]nk=1 counts how many times any given symbol x occurred

in the sequence x1 ... xn.

Each xn can therefore be encoded sequentially, updating the occurrence counts nx after each

symbol. For convenient choices of α, e.g. αx = 1 for all x ∈ X , interfacing to an arithmetic

coder becomes especially simple. To encode the length N of the sequence, the techniques

from section 5.7.2 can be used just as before.

As was shown in section 4.4.3, an alternative to the natural sequential encoding of the sequence

is to encode its symbol histogram first (e.g. using the multiset code from section 5.5.3),

followed by its permutation (e.g. with the permutation code from section 5.2.1).

5.7.4 Sequences with known ordering

A sorted sequence x(1) ... x(N) is a sequence whose elements have been arranged in a predefined

order, where the ordering is known to both the sender and receiver. Sorting a sequence

eliminates some of its degrees of freedom, which can be taken advantage of when compressing

it. Specifically, a sorted sequence contains exactly as much information as the multiset of

its symbol occurrences, as only the permutation information was destroyed by the sorting

operation.

To encode a sorted sequence is therefore as simple or difficult as encoding a multiset, and any

of the techniques from section 5.5 can be used.

An alternative to encoding the sorted sequence as a multiset is to encode it element by element,

carefully transforming the probability distribution over the next element to take into account

that the sequence is in sorted order. This transformation makes nearby elements more likely

than far away elements, and gives zero mass to elements that would violate the ordering;

4It should be noted that the Dirichlet distribution, though mathematically convenient, is by no means the
only possible choice of prior on D, and it may not always be appropriate.
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however, the computational overhead of this method makes it somewhat unattractive for

practical deployment.

5.8 Sets

5.8.1 Uniform sets

Suppose we want to encode a set S ⊆ X , where X is some known, finite superset. There are

exactly 2|X | subsets of X , so a uniform distribution over such sets would allocate probability

mass

Pr(S | X ) =
1

2|X | (5.54)

to each set S. Then we can encode any set S by a sequence of |X | binary digits s1 ... s|X |, one

for each element in X , indicating whether that element appears in S. The decoder, knowing

X and the element ordering the encoder used, can reconstruct S from the sequence of digits.

This coding procedure is optimal for uniformly distributed sets S, as each element x ∈ X has

an independent occurrence probability of 1
2
. The expected number of elements in a uniformly

distributed set is E[|S|] = 1
2
|X |.

5.8.2 Bernoulli sets

Generalising the above construction, suppose a set S ⊆ X is generated by flipping a coin for

each element of X , and each element has an independent probability θx of being selected:

Pr(x ∈ S) = θx and Pr(x 6∈ S) = 1− θx (5.55)

The distribution over S is:

Pr(S | X , θ) =
∏

x∈X
(θx)1[x∈S] (1− θx)1[x 6∈S] . (5.56)

Such a set S can be encoded with an arithmetic coder by sequentially encoding the set

membership for each element x ∈ X using a Bernoulli code of bias θx (see section 3.4.1).

5.9 Summary

This chapter introduced techniques for structural compression of various fundamental com-

binatorial objects, for various simple generative processes that produce such objects. Any

compressor necessarily makes assumptions about the distribution of its input objects. Stat-

ing the assumed generative process of the inputs makes it easier to understand the properties
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of a compression method, and helps in designing more complex models and appropriate com-

pression algorithms.

Many of the objects in this chapter (e.g. sets, multisets, distributions) can also be represented

as probability measures µ. For example, for a given set or multiset M, define:

µ =
1

|M|
∑

x∈M
M(x)δx (5.57)

where δx is a Dirac delta function (point mass) located at x. Methods for drawing iid samples

from such a probability measure µ (with or without replacement, and keeping or forgetting the

order of the draws) correspond to natural generative processes for permutations, combinations,

multisets and sequences. These relationships are summarised in Table 5.1.

Generative Process Input Structure

draw without replacement M permutation combination

draw with replacement D sequence multiset

draw with elimination D ordering set

split an integer N composition integer partition∗

split a multiset M ordered partition partition∗

ordered unordered

Table 5.1: Generative processes and resulting combinatorial structures.

∗Not covered in this thesis.
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Chapter 6

Context-sensitive sequence

compression

This chapter reviews a family of sequence compression algorithms that model sequences one

symbol at a time, using separate adaptive symbol distributions that depend on the context

of the symbol. The context of a symbol is the sequence of symbols immediately preceding it,

or a suffix thereof.

Notable examples of algorithms in this family include the “prediction by partial string match-

ing” (PPM) algorithm by Cleary and Witten (1984a); its unbounded-depth variants PPM*

(Cleary et al., 1995; Bunton, 1997); and compressors based on the probabilistic model named

“Sequence Memoizer” (Wood et al., 2009), such as “Deplump” (Gasthaus et al., 2010; Bartlett

and Wood, 2011).

This chapter makes several contributions to the understanding of this family of compression

methods:

• Section 6.2 gives a unifying view on the construction of the algorithms in this family,

showing the relationships between the existing algorithms.

• Sections 6.3 and 6.4 give an explicit form for the probabilistic model used in the classic

PPM algorithm (Cleary and Witten, 1984a; Moffat, 1990; Howard, 1993), generalising its

escape mechanism, and showing optimal settings of its parameters for various standard

corpus texts.

• Section 6.5 makes explicit the probabilistic model of PPM with blending, similar to

variants considered by e.g. Bunton (1997),1 and shows its optimal parameter settings

for standard corpus texts.

1Somewhat confusingly, Bunton uses different terminology in her papers: what she calls ‘blending’ is
actually PPM’s standard escape mechanism, and she refers to our notion of blending as ‘mixing’.

103
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• The influence of context depth on compression effectiveness is examined throughout

sections 6.3–6.6. Data from deep or unbounded contexts can help to compress some

data more effectively, but only in carefully controlled circumstances, and even then

there are limited returns.

• Section 6.6 reveals the source of Deplump’s compression effectiveness: its strength (at

least for the files in the standard corpora) stems mainly from the use of depth-dependent

parameters and parameter optimisation, rather than the use of unbounded-depth con-

texts.

6.1 Introduction to context models

The compression algorithms in this chapter compress sequences one symbol at a time; each

symbol is compressed using a predictive probability distribution that depends on the preceding

symbols. The operation of such an algorithm is much like a guessing game: at any point in

the sequence, the algorithm tries to predict which symbol comes next, expressing its guess in

the form of a probability distribution. This distribution is used to compress or decompress the

next symbol using arithmetic coding. After each symbol, the algorithm updates its internal

model to improve the guesses for the rest of the sequence.

Chapter 4 presented several adaptive models for sequences whose symbols are identically and

independently distributed. This independence assumption is not appropriate for sequences of

human text; for example, the letters E, T, A, O, I, N are the most frequent ones in English text;

but when the preceding letter is Q, the most probable letter is U. More generally, symbols in

human text are typically well predicted by the symbols that precede them.

A context-sensitive sequence compressor tries to take advantage of this property by using

separate symbol distributions for each context. The context of a given symbol is the sequence

of symbols immediately preceding it. For example, the length-3 context of symbol xk is the

sequence (xk−3, xk−2, xk−1). Each context-dependent distribution is learned gradually from

the data.

6.1.1 Pure bigram and trigram models

A bigram model selects a probability distribution for the next character based on the value

of the previous character. There are therefore |X | separate symbol distributions in a bigram

model, one for each symbol in the alphabet X . These symbol distributions are typically

learned from the data as compression proceeds. Consider a sequence whose first N symbols

are observed, and suppose the last observed symbol xN has value y. The bigram model selects
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the probability distribution for the next symbol xN+1 based on its context of length 1 (i.e. the

single symbol y). Let’s call this distribution Gy.

Formally, the distribution induced by a bigram model can be written as follows:

Pr(xN+1 = x | xN = y, x1 ... xN−1) = Gy(x | My) (6.1)

where My is a sufficient statistic for Gy. For example, My can be set to the multiset of

symbols that were immediately preceded by y in the sequence x1 ... xN :

My :=
N⊎

n=2

{xn | xn−1 = y} (6.2)

Intuitively, My then counts how often, for each symbol x in the alphabet, the bigram (y, x)

occurs in x1 ... xN . While this particular assignment of My is typical in bigram models, the

My could in principle be set differently.

More generally, an n-gram model predicts the symbols in the sequence using contexts of length

n− 1, with a separate adaptive distribution Gs for each possible context s. The next symbol

xN+1 is predicted using the distribution selected by its context s = (xN−n+1 ... xN):

Pr(xN+1 =x | x1 ... xN ) = Gs(x |Ms) (6.3)

where Ms is a sufficient statistic for Gs. In n-gram models, Ms is commonly set to the

multiset of those symbols in x1 ... xN that were directly preceded by s. For an alphabet of

|X | symbols, an n-gram model could end up having to learn up to |X |n−1 separate symbol

distributions. However, for n ≥ 3 and sequences made from human text, this worst-case

situation does not usually occur in practice.

Two difficulties arise when a pure n-gram model is to be used for sequence modelling or com-

pression: Firstly, an n-gram model does not assign probability to the first n − 1 symbols in

the sequence, requiring a mechanism to deal with this special case. Secondly, the distribution

for each context is learned separately from those of other contexts, even though there might

be similarities between some of these contexts. (For example, the distribution of symbols fol-

lowing the subsequence RTIO might be similar to the distribution of symbols following NTIO.)

A solution to both problems is to use probability distributions that combine information from

contexts of different depths.
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6.1.2 Hierarchical context models

In principle, any probability distribution over sequences can be factorised as follows:

Pr(x1 ... xN) =
N∏

n=1

Pr(xn | x1 ... xn−1) =
N∏

n=1

Gx1 ... xn−1(xn) (6.4)

where each Gx1 ... xn−1 is a separate context-dependent distribution, selected by the preceding

sequence x1 ... xn−1. Different context models correspond to different ways of assigning

probability distributions to the Gs. (From here onwards, I will use the notation x1 : k in

subscripts as an abbreviation for x1 ... xk.)

Typically, various constraints are placed on these context distributions. For example, the

family of bigram models is characterised by the constraint Gx1 : N−1
= GxN−1

, i.e. only the last

symbol is used to select the distribution over the next symbol. Similarly, the constraints of

an n-gram model can be described by Gx1 : N−1
= Gx(N−n+1) : (N−1)

.

A common assumption is that the distribution of a context s is similar to distributions of

contexts that share a common suffix with s. Let’s write suf(s) for the longest proper suffix

of s:

suf(xk : n) :=







xk+1 : n if k < n

ε otherwise
(6.5)

where ε is the empty sequence, and suf(ε) is undefined. For example, suf(ABC) = BC, suf(BC) =

C and suf(C) = ε. Our expectation is that Gs is similar to Gsuf(s).

One way of incorporating this sharing of information is to define the distributions recursively,

e.g. by making each distribution Gs a function of the distribution Gsuf(s). This recursive con-

struction is one of the characteristic features of the sequence compression algorithms covered

in this chapter. Rather than being fixed distributions, all the Gs are learned adaptively from

the data.

As an example of such a recursive model, consider the following definition for Gs:

Gs(xN+1 =x | Ms) :=
Ms(x)

|Ms|+ α
+

α

|Ms|+ α
·







1

|X | if s = ε

Gsuf(s)(x) otherwise

(6.6)

where α is a strength parameter,Ms is a multiset of symbol occurrences for context s, and |X |
is the size of the alphabet. The distributions Gs and summary multisets Ms are adaptively

constructed and therefore depend on the preceding sequence x1 ... xN , but for ease of notation

this dependency is quietly omitted here.

Note how equation (6.6) corresponds closely to the adaptive method from section 4.2.2. The

way the summary multisets Ms are chosen has a profound effect on the probability distri-
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butions Gs. A common choice for hierarchical models is the shallow update rule, which is

described in section 6.3.3. The distribution (6.6) can be interpreted as a sequential construc-

tion of a draw from a hierarchical Dirichlet process (with a uniform base distribution), if the

Ms are set and updated correctly. Details are described by e.g. Teh et al. (2006).

6.2 General construction

The compression algorithms discussed in this chapter have the following functionally separable

components:

• An algorithmic engine that comprises the mechanisms for computing, memorising and

providing access to summary information about each context. Engines may have techni-

cal restrictions on the kinds of models that can be used; e.g. finite versus infinite context

depth.

• A (hierarchical) probabilistic model, which specifies the way symbol probabilities are

calculated from the summary information. The probabilistic models of many classic

PPM variants are defined implicitly by specifying a ‘smoothing method’ and an ‘update

rule’.

• A learning mechanism, which updates the summary information in a way that allows

the model to improve its predictions (e.g. exact Bayesian inference, an approximate

method, or an ad-hoc method).

• An arithmetic coder, and a region mapping mechanism for the probabilistic model. In

conjunction, these two components are responsible for the encoding or decoding of the

compressed output sequence.

These components may be chosen more or less independently of each other, but they have to

be well matched to produce sensible results.

Most of the classic PPM variants are specified through a smoothing method and an update

rule, which (in conjunction) implicitly define a probabilistic model. The compressors based

on the Sequence Memoizer, on the other hand, state the probabilistic model explicitly, and

derive matching approximate Bayesian learning algorithms. (These algorithms could in turn

be interpreted as smoothing methods and associated update rules.)

One parameter common to most of these models is the maximum context depth D, which can

be finite or infinite. Some engines pose restrictions on the kind of models that can be used;

for example, the engine of the classic PPM algorithm does not support unbounded depth,
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and the engine of the “Deplump” compressor imposes certain restrictions on the probabilistic

model (these are described in section 6.6.5).

An overview of different compression methods that are unified by this construction can be

found in Table 6.1.

6.2.1 Engines

The engine includes the data structure and mechanism responsible for storing and updating

the statistics for different contexts, and making them available to other parts of the algorithm.

A commonly used data structure used by such an engine is the search trie, a tree that stores

data (such as symbol counts) indexed by a context string. Here is a list of several existing

engines:

• Classic PPM engine (Moffat, 1990), using fully-expanded context tries with vine point-

ers. This engine is limited practically to contexts of bounded depth. A description of

this engine is given in section 6.3.

• Classic PPM* engine (Cleary et al., 1995) based on Patricia tries. This engine collapses

non-branching nodes and uses back-pointers into the original string. The PPM* engine

was the first to support contexts of unbounded depth.

• Finite state automaton engine (Ukkonen, 1995; Bunton, 1996). This engine carefully

collapses non-branching nodes and temporarily re-expands them when needed, main-

taining a set of “active nodes”. Bunton used this engine to re-implement PPM*.

• Reverse suffix tree construction (Gasthaus et al., 2010) used by Deplump. For every

symbol, the tree is traversed from the root (from the current symbol backwards through

the observed string) to find the longest suffix. Non-branching nodes are collapsed into

single nodes.

These engines are functionally equivalent (except for technical restrictions as mentioned

above), and each engine will produce identical compression results for any of the probabilistic

models it supports.

6.2.2 Probabilistic models

The models used in context-sensitive compression algorithms have the following common

structure: they define, for any given context s, an adaptively changing (conditional) prob-

ability distribution Gs over symbols x ∈ X , using the summary information available for s
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Method Depth Smoothing Updates Details Reference
PPM{A,B} finite backing off full in Table 6.2 Cleary and Witten (1984a)
PPMC finite backing off shallow in Table 6.2 Moffat (1990)
PPM{P,X} finite backing off shallow see reference Witten and Bell (1991)
PPMD finite backing off shallow in Table 6.2 Howard and Vitter (1991, 1992)
PPME finite backing off shallow in Table 6.2 Åberg and Shtarkov (1997)
PPMG finite backing off shallow strength α, discount β section 6.4.2
BPPM finite blending shallow strength α, discount β section 6.5
PPM* unbounded backing off full PPMC + state selection Cleary et al. (1995)
PPM* SB unbounded various various PPMD + state selection Bunton (1997)
PPMII finite custom custom see references Shkarin (2001a,b, 2002)
SeqMem unbounded blending stochastic depth-dep. (α, β) Wood et al. (2009, 2011)
Deplump 1 unbounded blending various depth-dep. (α, β) Gasthaus et al. (2010)
Deplump 2 unbounded blending various depth-dep. (α, β) Bartlett and Wood (2011)

Table 6.1: Overview of various context-sensitive sequence compression methods. Many of
the above are unified in this chapter. The probabilistic models of these compressors (except
for Sequence Memoizer and Deplump), are specified implicitly through a smoothing method
and update rule.

and the distribution Gsuf(s) of the next shorter context. Probabilistic models of this kind are

called hierarchical models, and historically also known as smoothing methods.

An overview of smoothing methods and their empirical performance on word-based corpora

is given by Chen and Goodman (1996, 1998). Rather than giving an exhaustive treatment of

smoothing methods for compression here, I will distinguish two main categories of approaches:

(I) Switching to the shorter context when “not enough” data has been observed in the

longer context. This family of methods is called backing off. The resulting probability

distribution can be described by an urn scheme with an exclusion rule.

(II) Mixing the probability distributions for the longer and shorter contexts using a weighted

sum of the component distributions. The weights are a function of the symbol obser-

vation counts. This approach is called blending (or ‘interpolating’).

Methods from category I are cheaper to compute, as the backing-off mechanism does not need

to access the counts of all context depths for every symbol. Backing-off effectively ignores

some of the accumulated information. Its advantages over the methods from category II

are increased computation speed and implementation simplicity. The “probability estimation

methods” used in the classic variants of the PPM algorithm belong to category I.

Methods from category II compute their predictions involving the symbol counts from all

context depths, and can in principle give better predictions than methods from category I.

Examples of methods from category II include hierarchical Dirichlet processes and hierarchical

Pitman–Yor processes, and are used in sequence prediction models such as the language model

in Dasher (Ward et al., 2000), or the Sequence Memoizer by Wood et al. (2009).
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Historical notes. Smoothing methods have a fair amount of history, and some attempts have
been made to summarise and compare them, e.g. by Chen and Goodman (1996, 1998) and by
Champion (1997). In principle, any smoothing method could be used for compression, as long as
it allocates non-zero probability mass to all symbols in the alphabet.
Chen and Goodman concluded in the technical report that their modification to Kneser–Ney
smoothing (Kneser and Ney, 1995) performed best: blending rather than back-off, and sepa-
rate parameters for different context depths. Bayesian treatment arrived with: Nádas (1984),
hierarchical Dirichlet models (MacKay and Bauman Peto, 1995; Teh et al., 2006), hierarchical
Pitman–Yor models (Teh, 2006a,b).

Context depth. While increasing the context depth leads to more precise predictions,

each context appears less frequently, leading to sparse data and potentially less accurate

predictions (and thus worse compression). In the extreme case where a context appears for

the first time and no symbol has ever been observed in that context, this problem is called

the “zero frequency problem” (Witten and Bell, 1991; Cleary and Teahan, 1995). But more

than just a zero frequency problem, it’s really a general sparsity problem.

6.2.3 Learning

Context-sensitive sequence compressors typically maintain a collection of sufficient statistics

that summarise their knowledge about the symbol distributions of different contexts. The

algorithm attempts to learn these distributions by updating its sufficient statistics as it sees

more of the sequence.

It is important to note that probabilistic model and learning algorithm are intimately con-

nected, and cannot be considered independent components. In a fully Bayesian treatment,

all assumptions are specified by the model, and the correct learning method can be derived

mechanically. However, an exact algorithm for the ‘correct’ learning method does not exist

for all models. Two approaches might be followed in that case:

• using an approximate learning algorithm (such as MCMC methods or particle filtering).

• changing the model, or using an ‘incorrect’ method that still works reasonably well.

One might argue that these two approaches are not entirely disjoint concepts: the use of some

approximate learning algorithms might be considered changing of the model. For example,

Deplump’s UKN-inference algorithm is an approximate inference method for the hierarchi-

cal Pitman–Yor process, but the algorithm could also be understood as defining a different

probabilistic model.2

The early variants of PPM algorithm employed one of two popular learning mechanisms,

named ‘full updates’ and ‘shallow updates’ in section 6.3.3. These learning methods were not

2The difference between these two probabilistic models is made clear in equations (6.14) and (6.16).



6.3. THE PPM ALGORITHM 111

derived in a Bayesian way, but discovered empirically (Moffat, 1990, PPMC) or chosen for

algorithmic convenience (Cleary and Teahan, 1995, PPM*).

The algorithms based on the Sequence Memoizer primarily use approximate Bayesian learning

methods that are designed not to bias the probabilistic model. A practical approximate

learning algorithm may need to trade off among accuracy, computational resource demands,

and perhaps ease of implementation.

Overview

Having introduced this general family of compression algorithms, some specific constructions

are now discussed in more detail. Section 6.3 describes the PPM algorithm of Cleary and

Witten (1984a) with the modifications by Moffat (1990) and Howard (1993), and briefly dis-

cusses its relations to other PPM variants. Section 6.4.2 introduces PPMG, a two-parameter

generalisation of PPM’s escape mechanism, and reports the optimal setting of its parameters

(α,β) for various standard corpus files. Section 6.5 modifies PPM’s generalised escape mecha-

nism from back-off with blending, yielding a model similar to the “interpolated Kneser–Ney”

procedure described by Chen and Goodman (1998). This algorithm variant, named ‘BPPM’,

is then optimised along the same lines as in the previous section.

Finally, unbounded-depth variants of these algorithms are considered in section 6.6.

6.3 The PPM algorithm

The “prediction by partial string matching” (PPM) algorithm is a compression method that

combines predictions from different contexts using backing-off. It processes an input sequence

symbol by symbol, accumulating counts of symbol occurrences for different contexts (up to

some maximum depth D), and using those counts to compress the input with an arithmetic

coder.

6.3.1 Basic operation

Data structure. The classic PPM algorithm makes use of a data structure known as a trie, a

search tree that maps partial strings (contexts) up to some maximum length D to a histogram

of symbol occurrences. Each node stores one histogram, and typically also a pointer to the

node of the next shorter context; these pointers are called vine pointers. The vine pointers

help with two things: firstly, they allow the algorithm to retrieve the next shorter context

quickly when computing the predictive symbol distribution; secondly, they speed up finding

the context node for the next symbol in the sequence, when the finite-depth context window
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Figure 6.1: Diagrammatic representations of some basic PPM trie structures of depth 3.
Each node uniquely identifies a context s, and the labels of its outgoing arrows are the
components of its summary multiset Ms. Vine pointers are shown with dotted lines. The
shaded node indicates the node pointer after processing the last symbol. From left to right:
(6.1a) The string consisting of 100 As, followed by one B. (6.1b) The string AB repeated 100
times. (6.1c) The string ABCD. (6.1d) The string PAPAYA.

slides ahead by one symbol. Graphical examples of trie structures for simple strings are shown

in Figure 6.1.

Algorithm. In its basic form, the PPM algorithm works as follows:

1. Initialise the search trie with an empty root node.

2. Repeat until stop criterion is reached:

(a) Fetch. Retrieve the next input symbol x.

(b) Encode. Use the probability distribution defined by the histogram of the current

trie node (and its parents) to encode x. See section 6.3.2 for details.

(c) Learn. Update the histogram of the current trie node, and also the histograms of

the nodes along the vine pointer chain. See section 6.3.3 for details.

(d) Advance. Find (or create) the node in the trie corresponding to the next context,

creating any missing nodes. Let p be a pointer to the current node.

i. If the current node is at depth D in the trie, set p to the vine pointer.

ii. If the node pointed to by p does not have a child labelled x, create one.

(Make sure to set the new child’s vine pointer correctly, possibly by creating

additional nodes.)

iii. Point p to the child labelled x. The node identified by p is the new current

node.
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The stop criterion of the loop in step 2 may be that the end of the input sequence has been

reached, or that a predetermined number of symbols have been processed.

The beauty of this adaptive procedure, common to all sequence compressors of this kind, is

that the decoder can construct the same data structure and histograms when decompressing as

the encoder did during compression. Although the predictive probability distribution changes

adaptively after every step, each symbol is encoded and decoded using only information

obtained from the previous symbols — this information is available to both the encoder and

the decoder.

The part of the algorithm that most affects compression effectiveness is the probabilistic

model, which defines how symbols are encoded with the adaptively learned histograms, and

how the histograms are updated to incorporate new symbols.

Most developments after PPM’s initial publication were modifications to one or both of these

two components. A description of the original “probability estimation methods” and update

rules will follow shortly, along with a review of the history of PPM.

6.3.2 Probability estimation

All PPM algorithms use arithmetic coding to compress the sequence of input symbols, whose

symbol probabilities are computed from the adaptively changing histograms. PPM tradition-

ally assigns those probabilities using an “escape mechanism”, a computationally convenient

method which avoids making excessive lookups from the trie. The original form of the PPM

algorithm as published by Cleary and Witten (1984a) suggested two such escape mechanisms

(A and B), but better methods exist; these will be reviewed and generalised in section 6.4.2.

For simplicity of presentation, PPM’s escape mechanism will be described using method A

(which somewhat resembles the Laplace rule from section 4.2.1).

Given the symbol histogram of the current context, let N denote the total number of symbols

observed, and nx the number of times symbol x was seen. If nx > 0, symbol x is coded

with probability mass proportional to nx; otherwise, a special escape symbol (ESC) is coded to

communicate that the symbol has not yet occurred in this context.3 Method A defines these

probabilities as follows:

Pr(x) =
nx

N + 1
and Pr(ESC) =

1

N + 1
(6.7)

Whenever an escape event is coded, the symbol x itself still remains to be communicated. To

do this, the coding procedure is repeated recursively with the next shorter context (which is

easily accessible from the vine pointer). Eventually a context is reached in which the symbol

3ESC (somewhat like EOF) is a virtual symbol that does not occur in the input sequence.
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was seen before, and at that point the recursion terminates. If x has never been seen in any

context, the root node of the trie is ultimately reached and an escape event is coded there,

too. When that happens, x is finally encoded with a uniform distribution over all possible

symbols.

The approach as outlined so far works fine, but it does not use its permissible coding range

optimally, wasting information bandwidth. To see this, consider a context in which exactly

one symbol (X) has been observed previously, and now a new symbol (Y) is encountered. The

algorithm codes ESC and backs off to the next shorter context, where X has also been seen

before. But after processing ESC the decoder already knows that the next symbol cannot be

X, or any of the symbols observed in the previous context, because the encoder chose ESC

rather than an observed symbol.

This problem can be resolved by excluding from the shorter contexts all symbols that were

observed at least once in the longer contexts. By treating the counts of excluded symbols

as zero counts, the probability mass of excluded symbols is redistributed to the remaining

symbols in the context. The algorithm can communicate those symbols by passing up a set of

excluded symbols when it backs off to the next shorter context. Alternatively, it can just pass

the pointer of the previous context node, as the set of observed nodes in any given context is

always a subset of the set of observed nodes in the next shorter context.

Writing R for the set of excluded symbols and R =
∑

x∈R nx for the total number of excluded

symbol occurrences, PPM’s probability assignment under escape method A and the exclusion

rule becomes:

Pr(ESC | R) =
1

N −R + 1
and Pr(x | R) =







0 for x ∈ R
nx

N − R + 1
otherwise

(6.8)

Cleary and Witten (1984a) documented equation (6.7) in their paper, but used equation (6.8)

for their results. This symbol-exclusion modification is well known, but rarely stated explicitly.

In the PPM literature, the assignment of symbol and escape probabilities are typically stated

in plain form, without taking symbol exclusion into account.

To be pedantic, the algorithm as currently stated has one remaining information leak. Con-

sider a context in which all symbols of the alphabet have already been seen at least once.

Then the coding method as specified by equation (6.8) still allocates mass to ESC, even though

ESC can no longer occur. So strictly speaking, the ESC symbol should not get any probability

mass in this situation. As far as I am aware, none of the existing PPM implementations

attempt to close this gap; and in practice it’s probably not worth the effort, as the amount of

information lost through this situation is at worst log2
|X |+1

|X | bits per symbol, and diminishes

in the limit as more symbols are processed.
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6.3.3 Learning mechanism

Every time PPM has processed a new symbol, it updates the histograms in its trie data struc-

ture to reflect the new observation. This is how PPM learns the characteristics of the input

sequence, allowing it to improve its predictive probability distributions for future symbols.

The update method used in the original version of PPM by Cleary and Witten (1984a) can

be stated as follows:

Full updates. After observing a symbol x, update its count in the current

context, and in all shorter contexts (including the empty context). The counts

produced by this rule correspond exactly to those of a full n-gram model.

This update rule seems nice and natural, as each node counts exactly how often each symbol

occurs in its context. It turns out, however, that compression effectiveness (and efficiency)

improves with the following modification, introduced by Moffat (1990):

Shallow updates. After observing a symbol x, increment its count in the current

context. If x was observed for the first time, recursively update the next shorter

context using the same rule. [The counts produced by this rule correspond exactly

to those produced by the “1 table per dish” (1TPD) approximation for hierarchical

Pitman–Yor processes.]

In nearly all implementations, shallow updates are used. Shallow updates tend to give better

results than full updates; see e.g. MacKay and Bauman Peto (1995) for insights why this is

the case. (Shallow updates are sometimes named “update exclusions” in the PPM literature.)

6.3.4 PPM escape mechanisms

The PPM algorithm, as published by Cleary and Witten (1984a), proposed two escape meth-

ods, A and B, and the use of full updates and symbol exclusions. This form of the algorithm

was refined later by Moffat (1990), adding vine pointers, shallow updates, and an escape

method C. Escape methods were considered more generally by Witten and Bell (1991), also

outside the PPM algorithm, adding Poisson-process-based methods P and X and comparing

them to the existing methods. Howard (1993) proposed escape method D, which remains, to

the best of my knowledge, the most effective escape method for the classic PPM algorithm on

standard corpora. Method E was suggested by Åberg et al. (1997) as an improvement over

method D, but it’s not a clear winner; for details, see the compression results in appendix A,

and the contour plots in Figures 6.4 and 6.5.

All the above escape methods differ only in the assignment of symbol and escape probabilities,

and in the criterion used to determine when to trigger the escape. An overview of notable PPM
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PPMA PPMB PPMC PPMD PPME PPMG

Pr(x)
nx

N + 1

nx − 1

N

nx

N + U

2nx − 1

2N

4nx − 2

4N − 1

nx − β

N + α

Pr(ESC)
1

N + 1

U

N

U

N + U

U

2N

2U − 1

4N − 1

Uβ + α

N + α

Escape if: nx = 0 nx ≤ 1 nx ≤ 1 nx = 0 nx = 0 nx = 0

Table 6.2: Overview of classic PPM escape methods. The table shows each method’s escape
criterion, and its assignments to symbol and escape probabilities. N denotes how many
symbols were seen in total (in the current context), nx how many of those were the symbol x,
and U the number of unique symbols (among those N).
PPMA and PPMB were published by Cleary and Witten (1984a). PPMC was suggested by
Moffat (1990). PPMD was proposed by Howard (1993), and PPME by Åberg et al. (1997).
A parametrised generalisation, PPMG, is described in section 6.4.2.

escape methods can be found in Table 6.2. Section 6.4.2 introduces method G, a continuous

generalisation of escape methods A, D and E.

Section 6.5 describes variants of PPM that replace backing off with blending.

6.3.5 Other variants of PPM

Many modifications to the PPM algorithm have been proposed in the literature, often im-

proving compression effectiveness at the expense of significantly complicating the original

algorithm. Some of those modifications seem elaborate hacks which do not necessarily offer

much insight into why they work. These modifications are not considered further in this

chapter. A good summary of useful innovations to the PPM algorithm between 1984 and

2005 is given by Korodi and Tabus (2008).

The PPM algorithm can be amended to support contexts of unbounded depth. Cleary et al.

(1995) proposed such a modification, named PPM*, which includes a new trie data structure

that permits collapsing non-branching paths into single nodes. Unbounded depth variants of

PPM are discussed in section 6.6.

Shkarin (2001a) published a finite-depth algorithm named PPMII (PPM with information

inheritance), which uses custom probability estimation and update rules that were manually

optimised for good compression and speedy computation. As of 2014, the results produced

by PPMII are still state of the art and unbeaten by any other known PPM variant. PPMII

was included as a compression method in the ZIP file format by Peterson et al. (2006).

A PPM variant not discussed here is PPMZ by Bloom (1998). There are some independently

developed compression algorithms which were later shown to relate to PPM. These include
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DMC (Cormack and Horspool, 1987), whose relationship to PPM is shown by Bunton (1996);

and perhaps CTW by Willems et al. (1993, 1995). Cleary et al. (1995) mention a connection

between the Burrows–Wheeler transform and infinite context tries (as constructed by PPM*),

which is investigated further by Fenwick (2007). None of these are discussed further in this

chapter, but compression results for all the above methods are included in appendix A for

comparison.

6.4 Optimising PPM

This section visualises the effects of the choice of D, the maximum context depth of the PPM

algorithm. It also offers a slightly more general escape mechanism for classic PPM, and jointly

optimises its parameters alongside D for some files of standard compression corpora.

6.4.1 The effects of context depth

The finite-depth PPM algorithm is parametrised by a maximal context depth D. One might

expect that larger values of D allow capturing information from longer contexts, therefore

improving the algorithm’s predictive power and thus its compression effectiveness. Somewhat

surprisingly, however, it turns out that the optimal setting for typical English language text

files (of length up to 107 symbols) is at around D = 5. This effect is demonstrated in

Figure 6.2: compression effectiveness initially increases with D until it peaks at D = 5, and

deteriorates slightly beyond 6.

These results seem to justify that a setting of D = 5 could be hard-wired into the algorithm,

and indeed this appears to be fairly common practice. But the optimal choice of D also

depends on the input sequence and its length. Figure 6.3 demonstrates how, for a long text

file, the optimum setting of D can change as a function of the file’s length.

Conceptually, there’s something dissatisfying about imposing a bound on the context depth

in the first place: Surely, a sensible algorithm should become more effective at compressing

as it gains deeper knowledge of its input sequence. It appears that the classic PPM algorithm

simply isn’t putting added depth to good use.

As it turns out, added context depth can be used effectively. Unbounded-depth variants of

PPM and related algorithms are explored in section 6.6.

6.4.2 Generalisation of the PPM escape mechanism

Escape method G. This section presents a generalised escape method G, which parametrises

the symbol and escape probabilities with two continuous parameters α and β. Method G de-
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Figure 6.2: PPMD’s compression effectiveness in bits per symbol, measured on various
English text files of the Canterbury corpus, as a function of D (the maximum context depth).
For each of the corpus files, the optimal choice of D is indicated by a circle. The solid
diamonds mark the points beyond which additional depth has no further effect. Details
about the Canterbury corpus can be found in appendix A.

fines the symbol and escape probabilities as follows:

Pr(x) =
nx − β

N + α
· 1[nx > 0] and Pr(ESC) =

Uβ + α

N + α
, (6.9)

where N is the number of total symbol observations in this context, and U is the number

of unique symbol observations. The parameter β ∈ [0, 1]is a discount parameter, and α ∈
[−β,∞) is a concentration parameter, similar to those in a Pitman–Yor process.

The explicit form of method G, taking into account symbol exclusions, is:

Pr(ESC | R) =
Uβ + α

N−R+α
and Pr(x | R) =







0 for x ∈ R
nx − β

N−R+α
· 1[nx > 0] otherwise,

(6.10)

where R and R are defined as for equation (6.8). Escape method G generalises methods A,

D and E: PPMA is recovered for (α = 1, β = 0), PPMD for (α = 0, β = 1
2
), and PPME for

(α=−1
4
, β = 1

2
). As can be seen from Table 6.2, escape methods B and C are not generalised
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Figure 6.3: PPMD’s compression effectiveness as a function of input length, for different set-
tings of the maximum context depth D. The input sequence is shakespeare.txt (ca. 5 MB),
Shakespeare’s plays in concatenated plain text. The plot shows how the optimal setting of
D varies as more of the sequence is processed. For compressing the entire file, D = 6 is the
optimal setting. If only the first 100 000 bytes of the file are compressed, D = 5 is best.

by PPMG, because they use a different escape criterion.

Given that these escape methods can be viewed as locations in the 2-dimensional continuum

spanned by α and β, one might wonder which location (αOPT, βOPT) actually maximises PPM’s

compression effectiveness. The location of the optimum clearly depends on the sequence being

compressed and on the choice of the depth D. Figure 6.4 contains a contour plot of PPMG’s

compression effectiveness as a function of α and β (for fixed input text and fixed D), showing

the location of the optimum and the locations corresponding to escape methods A, D and E.

Table 6.3 shows the settings of α, β, and D that jointly optimise PPM’s compression effec-

tiveness for several files of the Canterbury corpus.

File αOPT βOPT DOPT compression rate (bps)

alice29.txt 0.223 0.366 5 2.1684
asyoulik.txt 0.290 0.380 5 2.4233
fields.c –0.260 0.510 5 2.0360
lcet10.txt 0.063 0.398 6 1.9199
plrabn12.txt 0.390 0.300 5 2.2795
xargs.1 –0.085 0.522 5 2.9510

Canterbury (complete) –0.040 0.554 5 1.7082

Table 6.3: Most effective possible compression with PPMG for various corpus files, and the
approximate setting of the parameters (αOPT, βOPT, DOPT) for which the optimal compression is
achieved.
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Figure 6.4: Contour plot of PPMG’s compression effectiveness in bits/symbol, measured
for alice29.txt as a function of strength parameter α and discount β, with maximum
context depth D = 6. The optimum of 2.1726 bits per symbol is obtained for α ≈ 0.115
and β ≈ 0.405. Traditional escape method PPMA corresponds to setting α = 1 and β = 0
(yielding 2.264 bps), PPMD corresponds to α = 0 and β = 1

2
(yielding 2.179 bps), and PPME

to α = −1
4

and β = 1
2

(yielding 2.194 bps). The results for other corpus files are similar, and
summarised in Figure 6.5.
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Figure 6.5: The optimal settings of the strength α and discount β parameters of PPMG
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contour marks a distance of 0.0025 bits per symbol from the optimum (indicated by a plus).
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6.4.3 The probabilistic model of PPM, stated concisely

The symbol distributions Gs of PPM’s traditional escape mechanism use symbol multisets

Ms as sufficient statistics (for all contexts s). A characteristic feature of these distributions is

that symbols that were observed at least once in context s are excluded from all contexts that

are suffixes of s. These exclusions are made explicit in the definition below: G
s\R denotes the

adaptive symbol distribution for context s that excludes all symbols in set R. (Note that the

adaptive distributions Gs and summary multisetsMs are changing objects whose predictions

for symbol xN+1 depend on the preceding symbols x1 ... xN ; as earlier in this chapter, this

conditional dependence is left implicit for ease of notation.)

For the generalised escape method with parameters α and β, the probabilistic model induced

by PPM can then be stated as follows:

G
s\R(x) :=







Ms(x)− β

T
\R
s + α

if x ∈Ms and x 6∈ R

U\R
s
· β + α

T
\R
s + α

·Gsuf(s)\Ms
(x) otherwise,

(6.11)

where T \R
s

is the total number of symbol occurrences inMs after excluding all symbols in R:

T \R
s

:=
∑

x∈Ms

Ms(x) · 1[x 6∈ R] (6.12)

and U\R
s

is the number of unique symbols in Ms that do not occur in R:

U\R
s

:=
∑

x∈X
1[x ∈Ms] · 1[x 6∈ R]. (6.13)

Gε is the top-level (unigram) distribution, and Gsuf(ε) is defined to be uniform (or some other

suitable base distribution over the source alphabet X ).

6.4.4 Why the escape mechanism is convenient

The probabilistic model used in the classic variants of PPM is implicitly defined through

the algorithm’s escape mechanism. The escape mechanism is computationally convenient,

because the algorithm can stop searching the trie when it finds a context in which the escape

criterion isn’t satisfied: whenever possible, the algorithm uses only the longest context to

compute the probability of a given symbol, and only “backs off” to the next shorter context

when the escape criterion triggers.

Interfacing the escape mechanism to an arithmetic coder can therefore be done with a recursive

procedure that encodes (for a given context s) either the symbol itself, or an escape event
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followed by recursion on the next shorter context suf(s). Such an implementation might make

up to D + 1 calls to the arithmetic coder’s storeRegion function to encode a given symbol.

The downside of this computational shortcut is that not all of the information stored in the

trie is taken into account, which can lead to worse symbol predictions and therefore less

effective compression. Also, the probability distributions induced by the escape mechanism

are somewhat harder to reason about than those defined by cleaner mathematical constructs,

such as Pitman–Yor processes.

6.5 Blending

The classic PPM algorithm can be modified to use other forms of probability estimation,

different from the original “escape mechanism” and its derivatives. Let’s now consider an

approach that combines the observations from all context depths, blending their probability

distributions (rather than switching between them and applying exclusion rules).

In particular, consider the following construction:

Gs(x) :=
Ms(x)− β

|Ms|+ α
· 1[x ∈Ms] +

Usβ + α

|Ms|+ α
·







1

|X | if s = ε

Gsuf(s)(x) otherwise,

(6.14)

where Us denotes the number of unique symbols seen in context s, and Ms is the context’s

summary multiset:

Us =
∑

x∈X
1[x ∈Ms]. (6.15)

Equation (6.14) is an instance of construction (4.4) and defines a probabilistic model that cor-

responds to “interpolated Kneser–Ney smoothing” (Chen and Goodman, 1998) with uniform

base distribution, generalised to include a global strength parameter α (originally assumed to

be zero). This model can be considered an approximate sequential construction of a Pitman–

Yor process; this connection is shown by Teh (2006a).

The probability assignments of equation (6.14), together with the shallow update rule from

section 6.3.3, define a PPM-like compressor which I’ll refer to as ‘BPPM’.

BPPM can be implemented straightforwardly by replacing PPM’s escape mechanism with

equation (6.14). There are no more ESC symbols in BPPM: symbol probabilities are always

calculated by visiting contexts of all depths. Computing the cumulative symbol distributions,

as required for the arithmetic coder, is computationally more expensive compared to standard

PPM, but caching can reduce the costs a bit.
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6.5.1 Optimising the parameters of a blending PPM

Having modified PPM’s probability assignments to use blending rather than backing off, let’s

look at some of the properties of the resulting compression algorithm. As BPPM has very

similar parameters to those of PPMG, we can investigate its compression effectiveness as a

function of D, α, and β and compare it to that of PPMG.

One might hope that, due to the increased sharing of information among different contexts,

BPPM has stronger compression effectiveness than PPMG on human text. When BPPM’s

parameters are set optimally, this is indeed the case: see Tables 6.3 and 6.4 for a direct

comparison. However, a blending PPM is not by itself sufficient to guarantee improved com-

pression over a PPM that uses backing off (e.g. with one of the standard escape mechanisms):

for some parameter settings, BPPM performs worse than PPMG.

Figure 6.6 shows how BPPM’s compression effectiveness changes as a function of the maximal

context depth D, for fixed (α, β). Note how the ‘dip and rebound’ effect is even stronger than

the one exhibited by PPMD in Figure 6.2. Finally, Figure 6.7 (page 126) shows a contour

plot of BPPM’s compression effectiveness as a function of α and β, for fixed D, measured

on alice29.txt of the Canterbury corpus. Note that the shape of the contours are very

different from those in the corresponding plot for PPMG (Figure 6.4, page 120).

File Size (bytes) αOPT βOPT DOPT bps

alice29.txt 152089 0.4006 0.8605 9 2.0542
asyoulik.txt 125179 0.4512 0.8882 10 2.3277
fields.c 11150 –0.1933 0.8511 12 1.8315
lcet10.txt 426754 0.1831 0.8784 9 1.8198
plrabn12.txt 481861 0.6306 0.8183 6 2.2048
random.txt 100000 8.7332 0.0000 1 6.0064
xargs.1 4227 –0.0372 0.7916 7 2.8021
world192.txt 2473400 –0.0703 0.9307 20 1.2211
shakespeare.txt 5283795 1.0200 0.9204 10 1.9642

Table 6.4: The best possible compression of BPPM for various corpus files, and the param-
eters (αOPT, βOPT, DOPT) for which the optimum is achieved.

6.5.2 Backing-off versus blending

The choice between backing-off (as used in PPM’s original escape mechanism) and blending

(as used in BPPM) generally has a big impact on the resulting compression effectiveness.

Using blending may be computationally more expensive than backing off, as more memory

accesses are needed. For non-integer settings of α and β, there may also be an added cost

through slightly more costly arithmetic operations.
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Figure 6.6: BPPM’s compression effectiveness on English text in bits per symbol, as a
function of D (the maximum context depth). The graph shows that for BPPM with parameters
fixed to α = 0 and β = 1

2
, increasing the context depth doesn’t improve the compression

effectiveness. For each file, a circle marks the setting for D which yields the most effective
compression, and a diamond indicates the depth limit (beyond which added depth has no
effect). For alice29.txt, BPPM’s optimum of 2.1802 bps is reached at D = 5, and worsens
as depth increases until converging to 2.6819 bps at D = 178 (its depth limit). Beyond
the depth limit, the compressed file size stays constant (and equals the result produced by
UKN-Deplump).
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Figure 6.7: Contour plot of BPPM’s compression effectiveness on alice29.txt, as a function
of strength α and discount β, with fixed maximum context depth D = 6. The compression
effectiveness is measured in bits / symbol.
The optimum of 2.0721 bps is located at αOPT ≈ 0.366 and βOPT ≈ 0.796. Note that BPPM’s
optimal depth for alice29.txt is D = 8 (not D = 6). The optimal settings of α and β for
different choices of D can be found in Table 6.5. Jointly optimised settings of the parameters
(α, β, D) for various other corpus files can be found in Table 6.4.
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D αOPT βOPT bytes bps α=0, β = 1
2 α= 1

2 , β = 3
4 α= 1

2 , β = 17
20

0 — — 152199 8.0057 8.0057 8.0057 8.0057
1 9.2706 0.0000 86923 4.5721 4.5730 4.5738 4.5742
2 1.8381 0.3286 65893 3.4659 3.4667 3.4695 3.4718
3 0.7982 0.5351 50886 2.6765 2.6803 2.6808 2.6867
4 0.3808 0.6669 42574 2.2393 2.2594 2.2424 2.2525
5 0.3542 0.7480 40157 2.1122 2.1802 2.1127 2.1219
6 0.3660 0.7955 39395 2.0721 2.2106 2.0734 2.0773
7 0.3729 0.8265 39173 2.0604 2.2774 2.0661 2.0626
8 0.3932 0.8464 39097 2.0564 2.3506 2.0689 2.0570
9 0.4006 0.8605 39055 2.0542 2.4150 2.0740 2.0545

10 0.4091 0.8704 39073 2.0552 2.4711 2.0820 2.0558
11 0.4196 0.8771 39095 2.0563 2.5167 2.0895 2.0577
12 0.4252 0.8822 39110 2.0571 2.5517 2.0954 2.0593
13 0.4306 0.8857 39120 2.0577 2.5779 2.1000 2.0607

Table 6.5: BPPM’s compression effectiveness on English text alice29.txt (152 089 bytes)
for different context depths D and different settings of the global strength and discount
parameters. The table shows, for each setting of D, the most effective compression possible
with BPPM, and for which setting (αOPT, βOPT) the optimum is obtained. For comparison, the
table also shows compression results for parameters fixed at (α = 0, β = 1

2
), (α = 1

2
, β = 3

4
),

and (α= 1
2
, β = 17

20
).

On most compression corpora, blending produces consistently better results than backing-off.

This is also reported by e.g. Bunton (1997) who constructed blending variants of PPMC and

PPMD. However, the behaviour of the predictive distribution changes dramatically when

backing-off is replaced with blending, significantly altering which settings of α and β result

in good compression. This issue has possibly been overlooked in prior work.

Consider for example the settings (α=0, β = 1
2
) used by PPMD’s escape mechanism: Figure 6.4

shows that (for alice29.txt) these values are close to the empirical optimum. They are also

convenient values from a computational perspective, allowing an implementation of PPMD

to compute the symbol and escape probabilities cheaply, using e.g. bitshifts. But using these

same parameters for a blending version of PPM would result in less effective compression

of the same text, as suggested by Figure 6.7. A more suitable choice of computationally

convenient parameters for blending variants of PPM might be e.g. α= 1
2
, β = 3

4
. This effect is

also demonstrated in Table 6.5.

To further illustrate the difference between blending and backing off, Table 6.6 shows a side-

by-side comparison of the predictive log probabilities produced by a blending version of PPM

versus a backing-off version of PPM. Figures 6.8 and 6.9 show the sequence of predictive log

probabilities generated by PPM and BPPM on alice29.txt, visualised as a point cloud. The

escape mechanism of PPM tends to produce repeated occurrences of particular probability

values; these repetitions show up as distinctive horizontal lines in Figures 6.8 and 6.10.
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There may be ways of compromising between backing-off and blending. For example, the

mechanism used by Shkarin (2001a) in PPMII could be considered such a compromise. The

modifications described by Shkarin are extensive and are not discussed further in this chapter.

6.6 Unbounded depth

Each of the PPM variants discussed in the previous sections learns symbol distributions for

contexts up to a maximum depth D, where D is often hard-wired into the algorithm. Imposing

a maximum context depth can be used to limit the memory requirements of an algorithm;

but there may be smarter ways to conserve resources, such as the tree node deletion technique

suggested by Bartlett et al. (2010).

As already stated in section 6.4.1, there’s a conceptual inelegance in imposing a depth limit.

Also, it seems dissatisfying when expanding a model’s cognitive horizon ends up worsening

(rather than improving) compression, as it does with PPM and BPPM.

This section reviews context-sensitive sequence compressors that use contexts of unbounded

depth, and shows how context-sensitive sequence models can be tuned to take advantage of

the information from deep contexts. Particular attention is given to the Sequence Memo-

izer and the Deplump algorithm, and their distinguishing features that make them beat the

unbounded-depth compressors based on PPM*.

6.6.1 History

PPM variants with unbounded context lengths have been around for a while. PPM* by Cleary

et al. (1995) was the first such method, contributing an algorithmic engine with practical

support for contexts of unbounded depth. PPM* used the escape mechanism of PPMC,

the “full updates” rule of section 6.3.3, and an added hack that selects the shallowest non-

branching node of the current context for computing the probability of the next symbol.

Noting that PPM* failed to beat comparable fixed-depth algorithms, Bunton (1997) improved

and generalised the implementation of PPM* in several ways: firstly by building an improved

engine with reduced memory footprint. Bunton’s engine is very similar to (but independent

from) that of Ukkonen (1995). Secondly, Bunton made systematic modifications to the model

of PPM* and compared the results. The winning variant (D*XSM) used shallow updates

rather than full updates, new state selection rules, blending rather than backing-off, and

PPMD’s discount and strength parameters (although these are suboptimal for blending, as

shown in section 6.5.1). The resulting compression effectiveness surpassed that of PPM* on

all standard corpora.
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Table 6.6: Symbol-by-symbol comparison of PPM’s and BPPM’s predictive log2 probability
mass for the example string “abcdabcdXabcd”. To make the comparison as helpful as possible,
both models were initialised to similar parameters: uniform base distribution over an alphabet
of 257 symbols (28 byte codes + EOF), all strengths set to zero, all discounts set to 1

2
, and

shallow update rules. Results for LZW are included for curiosity.

Pos Sym PPM(α=0, β = 1
2
) BPPM(α=0, β = 1

2
) LZW

1 a -8.0056245 -8.0056245 -8.0056245

2 b -9.0 -9.0056245 -8.0112273

3 c -8.9943534 -9.0056245 -8.0168083

4 d -8.9886847 -9.0056245 -8.0223678

5 a -3.0 -2.9777186 -7.0279060

6 b -1.0 -0.8604566 -1.0

7 c -1.0 -0.3670076 -7.0334230

8 d -1.0 -0.1718648 -1.0

9 X -9.9829936 -13.3275526 -8.0389190

10 a -2.0 -1.9906742 -6.4594316

11 b -0.4150375 -0.3804376 -0.5849625

12 c -0.4150375 -0.1777148 -1.0

13 d -0.4150375 -0.0861227 -7.0498485

14 EOF -9.9772799 -13.4910514 -9.0552824

Total: -64.1940487 -68.8530991 -80.3058010

Correct implementations of PPM or PPM* (with backing-off and symbol exclusions, escape
method D, shallow updates, no state selection rules or other modifications) should exactly
reproduce the numbers on the left. Blending variants such as BPPM or UKN-Deplump /
Sequence Memoizer (with correct parameters, shallow updates, no online optimisations or
other modifications) should exactly reproduce the numbers of the middle column. For finite-
depth methods, any depth D ≥ 2 should produce these values.
Some characteristics of the algorithms are visible in the table:

• Both algorithms compress the first symbol “a” using the uniform base distribution:
log2

1
257
≈ −8.0056245.

• For the first occurrence of characters bcd, the difference between “blending” versus
“backing off with symbol exclusions” is visible. Both algorithms pay a penalty for unseen
symbols: in a context with only one observed symbol, that penalty equals exactly 1 bit
(for α = 0 and β = 1

2
). The penalty is added to the new symbol’s probability mass

from the base distribution; BPPM uses the base distribution unmodified, giving mass
−9.0056 to each symbol. PPM too uses the base distribution, but excludes the mass of
symbols that were seen before, giving diminishing masses −9.0, −8.9943 and −8.9886.
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Figure 6.8: Symbol-wise log probabilities produced by PPMG (backing off, α = 0, β = 1
2
,

D = 5) for every symbol in alice29.txt. The horizontal lines are characteristic of PPM’s
backing off escape mechanism.
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Figure 6.9: Log probabilities produced by BPPM (blending, α = 0, β = 1
2
, D = 5) for every

symbol in alice29.txt. The blending mechanism produces a much smoother histogram,
with slightly heavier tails (not visible in this plot).
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Gasthaus et al. (2010) and Bartlett and Wood (2011) designed Deplump, a new unbounded-

depth context compressor based on the probabilistic model of the Sequence Memoizer by

Wood et al. (2009, 2011). Deplump’s data structure takes inspiration from the work of

Ukkonen (1995), but operates differently from existing PPM engines in that it stores the input

string in reverse, and finds each symbol context by traversing the tree from the root. With

carefully chosen parameters, Deplump beats the compression effectiveness of all unbounded-

depth compressors that preceded it.

6.6.2 The Sequence Memoizer

The variants of PPM presented so far were designed mainly from an algorithmic point of view,

and their implicit probabilistic models were rarely stated explicitly, and perhaps more of an

afterthought.

A radically different approach is taken in the work of Wood et al. (2009), where the probabilis-

tic model is constructed first, and corresponding sequential prediction and learning algorithms

are derived afterwards. The model, named the Sequence Memoizer, applies an unbounded-

depth hierarchical Pitman–Yor process prior to discrete sequences, and gives an incremental,

sequential construction of the conditional symbol distributions using approximate Bayesian

inference algorithms.

Like PPM and PPM*, the Sequence Memoizer can use a search tree to store its sufficient

statistics conveniently. An elegant feature of the Sequence Memoizer model is that this tree

can be represented in a space-saving manner without altering the model: by placing careful

restrictions on the parameters of the hierarchical Pitman–Yor process, the Sequence Memoizer

allows the sufficient statistics of non-branching nodes to be marginalised out exactly, making

it unnecessary to store them. This marginalisation exploits fragmentation and coagulation

properties of the hierarchical Pitman–Yor process (Pitman, 1999; Ho et al., 2006). For details,

the reader is encouraged to read the papers by Wood et al. (2009, 2011), Gasthaus and Teh

(2010), and Bartlett et al. (2010).

6.6.3 Hierarchical Pitman–Yor processes

The Pitman–Yor process is based on work by Perman et al. (1992); Pitman and Yor (1995),

and can be considered a two-parameter generalisation of the Dirichlet process. Teh (2006b)

describes a sequential construction for hierarchical Pitman–Yor processes and matching ap-

proximate learning mechanisms. When used for context-sensitive data compression, the pre-
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dictive distributions of a hierarchical Pitman–Yor process can be stated as follows:

Gs(x) :=
Ms(x)− Ts(x) · β
|Ms|+ α

+
|Ts| · β + α

|Ms|+ α
·







1

|X | if s = ε

Gsuf(s)(x) otherwise

(6.16)

where Ts is a submultiset of Ms that records, for each value x ∈ X , how often x was gen-

erated from the second mixture component (involving the parent distribution Gsuf(s)), out of

theMs(x) times x was generated by Gs in total. Equation (6.16) is an instance of construc-

tion (4.5).

The “correct” Bayesian learning mechanism for a sequentially constructed hierarchical Pitman–

Yor process does not have an exact analytic form, as the Ts cannot be determined exactly

from observed data. (Neither can the Msuf(s) or Tsuf(s).) Approximate inference algorithms

exist, and are described by Teh (2006b). For the Sequence Memoizer in particular, Gasthaus

et al. (2010) describe and compare suitable approximate inference methods.

If Ts is restricted to be a set (rather than a multiset), equation (6.16) turns into the predictive

distribution of BPPM shown in equation (6.14).

6.6.4 Deplump

The Sequence Memoizer was first applied to data compression by Gasthaus et al. (2010), and

subsequently refined and made practical by Bartlett and Wood (2011); the resulting algorithm

was branded “Deplump”. The emphasis of this algorithm was to stay as true as possible

to the original Sequence Memoizer model, while making every effort to make compression

computationally efficient.

The computational innovations include an algorithmic engine that supports unbounded con-

text depths and collapses non-branching nodes in a way that takes advantage of the Sequence

Memoizer’s marginalisation properties. Gasthaus et al. (2010) describe two different approx-

imate inference algorithms that can be used for updating the data structure: one of them

(1PF) makes stochastic updates to the Ts counts using a particle filter, the other (UKN) uses

equation (6.14) and the shallow update rule from section 6.3.3. This latter approach has the

benefit that the Ts become a deterministic function ofMsuf(s) and therefore don’t need to be

stored explicitly in the tree. This UKN variant of Deplump is functionally identical to BPPM

with unbounded context depth, with the exception that BPPM places fewer restrictions on

its parameters.

Improvements by Gasthaus and Teh (2010) and Bartlett et al. (2010) reduced the memory

footprint of the Sequence Memoizer machinery, for example by carefully deleting nodes at

random from the tree when a given memory limit is exceeded. These changes were integrated
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into Deplump by Bartlett and Wood (2011), and augmented with tweaks that departed from

the original model, such as online optimisation of the discount parameters during compression.

The compression effectiveness on standard corpora reported for the Deplump algorithms show

a promising improvement over those of most existing PPM variants, one notable exception

being PPMII by Shkarin (2001a).

The compressors based on the Sequence Memoizer bear a remarkable similarity to other PPM

compressors, and should be considered members of the same family. For example, PPMG

can be turned into an instance of UKN-Deplump by replacing backing-off with blending, and

adding support for unbounded context depth.

6.6.5 What makes Deplump compress better than PPM?

One of the claims by Gasthaus et al. (2010) is that Deplump’s superior compression effective-

ness (over PPM, PPM* and CTW) stems from Deplump’s ability to make effective use of data

from contexts of unbounded depth, and from using a probabilistic model that makes power-

law assumptions. But most PPM compressors make power-law assumptions, too, including

unbounded-depth variants such as PPM* by Cleary et al. (1995) or Bunton (1997). So one

might wonder where Deplump’s ability to harness contexts of unbounded depth really comes

from. After all, Deplump is not all that different from BPPM, and section 6.5.1 and Figure 6.6

showed how increased context depth worsens BPPM’s compression effectiveness rather than

improving it.

So how does Deplump differ? The secret lies in the way the parameters are chosen. BPPM

(as it was described in section 6.5) uses one pair of parameters (α, β) that is shared by all

contexts. Deplump instead uses depth-dependent parameters, i.e. a pair of parameters (αd, βd)

for each depth d, shared by all contexts of that depth.4 If these depth-dependent parameters

are set to carefully chosen values, the “dip-and-rebound” effect (visible in e.g. Figure 6.6 on

page 125) can be avoided. An example is shown in Figure 6.11: for a BPPM with carefully

chosen depth-dependent parameters, additional context depth does not significantly worsen

compression.

However, even with carefully set parameters, unbounded depth does not necessarily improve

compression. For example, Table 6.7 compares the compression effectiveness of unbounded-

depth Deplump to that of variants with imposed depth limits; in each case, Deplump’s depth-

dependent discount parameters were set to the default values from Gasthaus (2010). As can

be seen from the table, truncating Deplump’s depth can improve compression.

4Actually, to preserve the marginalisation properties of the Sequence Memoizer, only the discount param-
eters are depth-dependent in Deplump. This is less of a concern for BPPM, where strength parameters can
be made depth-dependent, too.
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Figure 6.11: Compression effectiveness of BPPM with depth-dependent parameters, as a
function of D (the maximal context depth). Results are shown for various files of the Canter-
bury corpus, in bits per symbol. A circle indicates the optimal maximal context depth, and a
solid diamond marks the context depth horizon, beyond which the slope of the curve is zero.
The following depth-dependent strength and discount parameters were used:

(α1 ... α10) = (20.7135, 0.8211, 0.4377, -0.1019, 0.1752, 0.0654, 0.6838, 0.5443, 0.6390, 0.8851)
(β1 ... β10) = (0.0002, 0.5560, 0.7375, 0.7916, 0.8707, 0.8905, 0.9264, 0.9386, 0.9464, 0.9216)

The deepest parameters (α10, β10) were used for all D ≥ 10.
Compare this plot to e.g. Figure 6.6 (on page 125) or Figure 6.2 (on page 118).

Table 6.7: Comparison between unbounded-depth and fixed-depth UKN-Deplump’s com-
pression effectiveness (in bits per symbols). Deplump’s discount parameters were set to the de-
fault values found in the source code of Gasthaus (2010): β1 ... β5 = (0.62, 0.69, 0.74, 0.80, 0.95)
where βD = β5 for all D > 5. Deplump’s global strength parameter was set to α = 0.

File D =8 D =10 D =15 D =20 D =30 D =40 D =50 D =75 D =100 D =∞
alice29.txt 2.056 2.050 2.048 2.048 2.048 2.048 2.048 2.048 2.048 2.049
asyoulik.txt 2.320 2.316 2.315 2.314 2.314 2.314 2.314 2.314 2.314 2.314
cp.html 2.183 2.173 2.162 2.157 2.154 2.153 2.153 2.154 2.154 2.154
fields.c 1.889 1.867 1.846 1.836 1.829 1.827 1.827 1.827 1.827 1.829
grammar.lsp 2.273 2.249 2.238 2.234 2.232 2.232 2.232 2.234 2.234 2.234
kennedy.xls 1.570 1.582 1.615 1.615 1.615 1.615 1.615 1.615 1.615 1.615
lcet10.txt 1.825 1.817 1.810 1.808 1.807 1.807 1.807 1.806 1.806 1.806
plrabn12.txt 2.212 2.214 2.216 2.216 2.215 2.215 2.215 2.215 2.215 2.215
ptt5 0.786 0.781 0.784 0.784 0.786 0.790 0.795 0.794 0.795 fail
sum 2.564 2.534 2.488 2.470 2.453 2.446 2.443 2.441 2.440 2.450
xargs.1 2.824 2.818 2.812 2.812 2.814 2.812 2.812 2.812 2.812 2.812
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The idea of using depth-dependent discount parameters may have originated with Chen and

Goodman’s versions of Kneser–Ney smoothing, in particular the “interpolated Kneser–Ney”

method from section 4.1.6 of their technical report (Chen and Goodman, 1998).

6.6.6 Optimising depth-dependent parameters

Selecting discount parameters based on context depth is the primary contribution to the

compression effectiveness of Deplump and the Sequence Memoizer. But the big question is

how these depth-dependent parameters should be set. This problem is somewhat similar

to optimising the escape mechanism for classic PPM, but harder because there are more

parameters.

One way of optimising the parameters is through the use of a conjugate gradient minimization

algorithm: using such a method requires being able to evaluate the gradients of the model’s

predictive log probability, i.e. its partial derivatives with respect to each of the parameters.

One of the benefits of working explicitly with probability distributions is that the gradients

are often easy to obtain analytically. All optimisations reported in this chapter were carried

out using a custom built conjugate gradient search algorithm based on macopt (MacKay,

2002), using analytically derived gradients for the depth-dependent discount and strength

parameters.

One might also wonder how many depth-dependent parameters are required to get a decent

improvement in compression effectiveness. Table 6.8 shows the best possible compression of

file alice29.txt as a function of D and W , where D is the maximum context depth, and

W is the number of depth levels d that should receive their own parameter set (αd, βd). The

results suggest that data from deep contexts are used most effectively when at least W = 7

depth-dependent sets of optimised parameters are used (for depths 0 ≤ d < W ). The table

also shows that even though it pays off to increase the context depth, there are diminishing

returns.

A technique that is mentioned (but not described in detail) in the papers by Gasthaus et al.

(2010) and Bartlett and Wood (2011) is to gradually optimise the parameters “online”, i.e. af-

ter each symbol, interleaved with updating counts in the data structure. Adding an online

optimisation method to a probabilistic model is a fundamental modification of that model,

and should probably be noted as such. Online optimisations could also be applied to other

compression methods, but are not investigated further in this chapter.
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Table 6.8: Best possible compression effectiveness of BPPM, measured on alice29.txt, as
a function of context depth D and the number W of depth-dependent strength and discount
parameters. For each setting of D and W, BPPM’s depth-dependent discount and strength
parameters (W each) were jointly optimised using a conjugate-gradient method. The table
shows the compression effectiveness, in bits per symbol, at the optimum parameter setting.
The column for W =1 contains the results from Table 6.5 (on page 127).

D W = 1 W = 2 W = 3 W = 4 W = 5 W = 6 W = 7 W = 8 W = 9 W =10
1 4.5721
2 3.4659 3.4657
3 2.6765 2.6761 2.6761
4 2.2393 2.2387 2.2386 2.2383
5 2.1122 2.1113 2.1107 2.1107 2.1105
6 2.0721 2.0711 2.0700 2.0694 2.0686 2.0685
7 2.0604 2.0593 2.0577 2.0565 2.0547 2.0546 2.0545
8 2.0564 2.0552 2.0533 2.0513 2.0485 2.0482 2.0481 2.0479
9 2.0542 2.0530 2.0507 2.0482 2.0444 2.0438 2.0437 2.0436 2.0435

10 2.0552 2.0538 2.0514 2.0484 2.0438 2.0429 2.0427 2.0427 2.0426 2.0425
11 2.0563 2.0550 2.0524 2.0489 2.0437 2.0425 2.0422 2.0422 2.0422 2.0421
12 2.0571 2.0557 2.0530 2.0492 2.0434 2.0420 2.0417 2.0417 2.0416 2.0416
13 2.0577 2.0563 2.0534 2.0495 2.0433 2.0417 2.0413 2.0413 2.0413 2.0412
14 2.0583 2.0569 2.0540 2.0499 2.0434 2.0416 2.0411 2.0411 2.0411 2.0411
15 2.0588 2.0573 2.0544 2.0501 2.0433 2.0414 2.0409 2.0409 2.0409 2.0408
16 2.0592 2.0577 2.0547 2.0503 2.0433 2.0413 2.0408 2.0407 2.0407 2.0407
17 2.0595 2.0581 2.0550 2.0505 2.0434 2.0413 2.0407 2.0406 2.0406 2.0406
18 2.0598 2.0583 2.0553 2.0507 2.0434 2.0412 2.0406 2.0405 2.0405 2.0405
19 2.0601 2.0586 2.0555 2.0509 2.0435 2.0412 2.0405 2.0405 2.0405 2.0405
20 2.0603 2.0588 2.0557 2.0510 2.0435 2.0412 2.0405 2.0405 2.0404 2.0404
21 2.0605 2.0590 2.0559 2.0512 2.0436 2.0412 2.0405 2.0405 2.0404 2.0404
: : : : : : : : : : :

26 2.0611 2.0596 2.0564 2.0516 2.0437 2.0413 2.0405 2.0404 2.0403 2.0403
31 2.0611 2.0596 2.0564 2.0515 2.0436 2.0410 2.0402 2.0401 2.0401 2.0400
41 2.0612 2.0598 2.0565 2.0516 2.0436 2.0410 2.0401 2.0401 2.0400 2.0400
51 2.0613 2.0598 2.0566 2.0516 2.0436 2.0410 2.0401 2.0400 2.0400 2.0399
61 2.0614 2.0599 2.0566 2.0517 2.0436 2.0410 2.0401 2.0400 2.0399 2.0399
71 2.0614 2.0599 2.0566 2.0517 2.0436 2.0410 2.0401 2.0400 2.0399 2.0399
81 2.0614 2.0599 2.0567 2.0517 2.0436 2.0410 2.0401 2.0399 2.0399 2.0398
91 2.0614 2.0599 2.0567 2.0517 2.0436 2.0410 2.0401 2.0399 2.0399 2.0398

101 2.0614 2.0599 2.0567 2.0517 2.0436 2.0410 2.0401 2.0399 2.0399 2.0398
121 2.0615 2.0600 2.0567 2.0517 2.0436 2.0410 2.0401 2.0400 2.0399 2.0398
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Figure 6.12: Scatter plot comparing the symbol-wise predictions of unbounded-depth UKN-
Deplump with those of a finite-depth BPPM (with D = 15), on file alice29.txt of the
Canterbury corpus. Each dot in the plot represents one of the 152 089 symbols in the
file. Both algorithms used the same strength and depth-dependent discount parameters:

α = 0, β1 ... β6 = (0.62, 0.69, 0.74, 0.80, 0.95).
These parameter settings are the defaults used in the source code of Gasthaus (2010). The
plot shows that the predictions of UKN-Deplump are extremely similar to those of a finite-
depth BPPM. The predictions converge as D increases, and are identical when D ≥ 178.
BPPM at D =15 compresses alice29.txt better than UKN-Deplump by 67 bits (9 bytes).
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Figure 6.13: The relations between different context-sensitive compression models, ignoring
added hacks. These models have similar parameters (strength α and discount β), which can
be set globally or made to depend on context depth.

6.6.7 Applications of PPM-like algorithms

From its original conception, the PPM algorithm was designed for data compression of English

language text files. But more generally, PPM provides an adaptive predictive distribution over

symbols in a sequence, which can be used in other ways.

For example, PPM has been used for text categorisation, e.g. by Frank et al. (2000) and

Teahan and Harper (2001): Categories are represented by a collection of documents, with an

associated PPM model pre-trained on those documents. New documents are assigned to one

of the categories based on which pre-trained PPM predicts it best (i.e. compresses it to the

smallest number of bits). PPM can also be used for text correction (Teahan et al., 1998). An

algorithm similar to BPPM has found use in the predictive text entry method Dasher (Ward

et al., 2000).

Finally, PPM-like prediction models find use in context-sensitive ensemble compressors such

as PAQ (Mahoney, 2002, 2005). Ensemble compressors combine the predictions from several

probabilistic models to form a single predictive distribution that is used for compressing the

next symbol. Each of the component models may be context-sensitive, for a more liberal

notion of context (any function of the preceding sequence). The mechanism that combines

the different models is itself adaptive and context-sensitive, and well worth studying; see

e.g. Knoll and de Freitas (2012) for an insightful analysis. Ensemble compressors currently

produce the best known compression results on standard corpora, but at a high runtime cost

that scales with the number of component models used: typical implementations are orders

of magnitude slower than algorithms from the PPM family.

6.7 Conclusions

This chapter reviewed a family of algorithms that include the PPM algorithm by Cleary and

Witten (1984a) and compressors based on the Sequence Memoizer by Wood et al. (2009, 2011).
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The algorithms in this family differ functionally only in their predictive distributions and

their learning mechanism. The algorithmic engines of the compressors are nearly functionally

equivalent, but may exhibit different memory and runtime costs.

The predictive distributions of two types of smoothing methods were considered: backing off

as defined through PPM’s escape mechanism, and blending, using the predictive distribution

corresponding to interpolated Kneser–Ney smoothing. Both of these methods can be para-

metrised by a global strength parameter α and a discount parameter β. Optimal settings of

these parameters were reported on various input files from the Canterbury corpus, both for

blending and backing-off.

In practice, good global parameter settings for backing-off are α=0 and β = 1
2
, corresponding

to escape method D by Howard (1993). For blending, I recommend setting α = 1
2

and β = 17
20

(or β = 3
4
, if avoiding multiplication and division operations is important).

This chapter also investigated the influence of context depth on compression effectiveness, in

particular whether unbounded contexts give a consistent advantage over bounded contexts.

For the models that use one global pair of parameters (α, β), unbounded contexts worsen

rather than improve the compression effectiveness on human text. One way these models can

take advantage of data from deep contexts is by using separate discount (and maybe also

strength) parameters that depend on the context depth. These depth-dependent parameters

must be set carefully. Models that support contexts of unbounded depth seem more elegant

than finite-depth models, but the unboundedness comes at a computational cost. On human

text, unbounded-depth contexts can help, but offer only limited returns.

A notable algorithm investigated in this chapter is Deplump by Gasthaus et al. (2010) and

Bartlett and Wood (2011). Deplump is essentially a blending PPM variant with support

for contexts of unbounded depth; its compression effectiveness on files of the Calgary and

Canterbury corpora stems from carefully optimised depth-dependent discount parameters

rather than its ability to use contexts of unbounded depth. Even with carefully optimised

parameters, there are diminishing returns for unbounded depth; similar conclusions are drawn

by Wood (2011). Truncating Deplump’s search tree at a fixed depth (e.g. D = 15) produces

very similar compression results on the files of the Canterbury corpus as the unbounded-depth

version.

Future directions. Imposing resource constraints on a compression algorithm is necessary

for the method to be of practical use; for PPM-like algorithms, capping memory usage and

trie search time are of primary concern. Rather than restricting the maximum context depth,

other ways of limiting resource usage might offer better compromises, such as the technique

proposed by Bartlett et al. (2010). Although blending is computationally more expensive than

backing off, its overhead might be reducible through stochastic caching: such a technique is

used for example in PPMII by Shkarin (2001a).
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Blending variants of PPM do offer a significant improvement over variants that use backing off.

For both fixed and unbounded-depth models, compression effectiveness improves even more

when sensibly chosen depth-dependent parameters are used. Further improvement might

be gained by making parameters also depend on ‘node fanout’, i.e. the number of unique

symbols seen in a context: such a method is proposed by Chen and Goodman (1996) as

“modified interpolated Kneser–Ney” smoothing, and is also used in Shkarin’s PPMII. An

innovative technique introduced by Deplump is the use of online parameter optimisation:

such techniques could find use in many other compression algorithms.
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Chapter 7

Multisets of sequences

This chapter shows a slightly more complex application of structural compression: compress-

ing a multiset of strings (e.g. a multiset of words or hash sums) in a way that takes advantage

of the multiset’s disordered structure. The solution presented in this chapter involves map-

ping the collection to an order-invariant representation (e.g. a tree), deriving an adaptive

probabilistic model for this representation, and then compressing the representation using

the model. The resulting method can store a collection of sequences more compactly than

the concatenation of the sequences, even when the sequences in the collection are individu-

ally incompressible (such as cryptographic hash sums). The effectiveness of the algorithm is

demonstrated practically on multisets of SHA-1 hashes, and on multisets of arbitrary, indi-

vidually encodable objects.

7.1 Introduction

Consider a collection W of N words {w1 ... wN}, each composed of a finite sequence of

symbols. The members of W have no particular ordering (the labels wn are used here just

to describe the method). Such collections occur in e.g. bag-of-words models. The goal is to

compress this collection in such a way that no information is wasted on the ordering of the

words.

Making an order-invariant representation of W could be as easy as arranging the words in

some sorted order: if both the sender and receiver use the same ordering, zero probability

could be given to all words whose appearance violates the agreed order, reallocating the

excluded probability mass to words that remain compatible with the ordering. However, the

correct probability for the next element in a sorted sequence is expensive to compute, making

this approach unappealing.

143
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It may seem surprising at first that W can be compressed in a way that does not involve

encoding or decoding its components wn in any particular order. The solution presented in

this chapter is to store them “all at once” by transforming the collection to an order-invariant

tree representation, deriving an adaptive probabilistic model for this representation, and then

compressing the tree using the model.

The problem of compressing collections of sequences has received prior attention in the lit-

erature. Reznik (2011) gives a concrete algorithm for compressing sets of sequences, also

with a tree as latent representation, using an enumerative code (Zaks, 1980; Cover, 1973)

for compressing the tree shape. Noting that Reznik’s construction isn’t fully order-invariant,

Gripon et al. (2012) propose a slightly more general tree-based coding scheme for multisets.

The work in this chapter offers a different approach: it derives the exact distribution over

multisets from the distribution over source sequences, and factorises it into conditional uni-

variate distributions that can be encoded with an arithmetic coder. It also gives an adaptive,

universal code for the case where the exact distribution over sequences is unknown.

7.2 Collections of fixed-length binary sequences

Suppose we want to store a multiset of fixed length binary strings, for example a collection

of hash sums. The SHA-1 algorithm (NIST, 1995) is a file hashing method which, given any

input file, produces a rapidly computable, cryptographic hash sum whose length is exactly

160 bits. Cryptographic hashing algorithms are designed to make it computationally infeasible

to change an input file without also changing its hash sum. Individual hash sums can be used,

for example, to detect if a previously hashed file has been modified (with negligible probability

of error), and collections of hash sums can be used to detect if a given file is one of a preselected

collection of input files.1

Each bit digit in a SHA-1 hash sum is uniformly distributed, which renders single SHA-1

sums incompressible. It may therefore seem intuitive at first that storing N hash sums would

cost exactly N times as much as storing one hash sum. However, an unordered collection of

SHA-1 sums can in fact be stored more compactly. The potential saving for a collection of N

random hash sums is roughly log2 N ! bits. For example, the practical savings for a collection

of 5000 SHA-1 sums amount to 10 bits per SHA-1 sum, i.e. each SHA-1 sum in the collection

takes only 150 bits of space (rather than 160 bits).

A concrete method for compressing multisets of fixed-length bit strings (such as collections

of SHA-1 sums) is described below. The method exploits three properties: firstly, that the

1If an application cares mainly about testing membership in a collection, even more compact methods
exist, for example Bloom filters (Bloom, 1970). Bloom filters are appropriate when a not-so-negligible chance
of false positives is acceptable.
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length of each bit string is known and identical for all strings; secondly, that the bits in each

string are uniformly distributed; and thirdly, that the order of the strings relative to each

other in the collection is not important.

7.2.1 Tree representation for multisets of fixed-length strings

A multiset of binary sequences can be represented with a binary tree whose nodes store

positive integers. Each node in the binary tree partitions the multiset of sequences into two

submultisets: those sequences whose next symbol is a 0, and those whose next symbol is a 1.

The integer count n stored in the root node represents the total size of the multiset, and the

counts n0, n1 stored in the child nodes indicate the sizes of their submultisets. An example of

such a tree and its corresponding multiset is shown in Figure 7.1.
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The binary tree representing the multiset:

{ 000 000 010 011 101 110 111 }.

The count at each node indicates the number of
strings starting with the node’s prefix: e.g. there
are 7 strings starting with the empty string,
4 strings starting with 0, 3 strings starting with 1,
and 2 strings starting with 01.

The original multiset can be reconstructed from
the tree.

Figure 7.1: Binary tree representing a multiset of seven fixed-length bit strings. Such a
tree can be used, for example, to store a collection of SHA-1 hash sums in an order-invariant
fashion.

To save space, nodes with zero counts may be omitted from the tree. For a multiset of fixed-

length sequences, sequence termination is indicated by a leaf node, or a node that only has

children with a count of zero. The sequence of branching decisions taken to reach any given

node from the root is called the node’s prefix. To recover the original multiset from the tree, it

suffices to collect the prefix of each leaf node, including each prefix as many times as indicated

by the leaf node’s count.

A binary tree as described above is unique for any given collection of binary strings. The tree

can be constructed incrementally, and supports addition, deletion and membership testing

of sequences in O(L) time, where L is the sequence length. Merging two trees can be done

more efficiently than adding one tree’s sequences to the other individually: the counts of

nodes whose prefixes are equal can simply be added, and branches missing from one tree
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can be copied (or moved) from the other tree. Extracting N sequences from the tree, either

lexicographically or uniformly at random, takes O(L ·N) time.

7.2.2 Fixed-depth multiset tree compression algorithm

The previous section showed how a multiset of N binary sequences of fixed length L can be

converted to a tree representation. This section derives exact conditional probability distri-

butions for the node counts in the resulting tree, and shows how the tree can be compactly

encoded with an arithmetic coder.

Suppose that N and L are known in advance. With the exception of the leaf nodes, the count

n at any given node in the tree equals the sum of the counts of its children, i.e. n = n0 + n1.

If the bits of each string are independently and identically distributed, the counts of the child

nodes (conditional on their parent’s count) jointly follow a binomial distribution:

n1 ∼ Binomial(n, θ)

n0 = n− n1

n

n0

0

n1

1 (7.1)

where θ is the probability of symbol 1. If the symbols 0 and 1 are uniformly distributed (as

is the case for SHA-1 sums), θ should be set to 1
2
. Given the parent count n, only one of

the child counts needs to be communicated, as the other can be determined by subtraction

from n.

Because all strings in the multiset have length L, all the leaf nodes in the tree are located at

depth L, making it unnecessary to communicate which of the nodes are leaves.

If N and L are known, the tree can be communicated as follows: Traverse the tree, except for

the leaf nodes, starting from the root (whose count N is already known). Encode one of child

counts (e.g. n1) using a binomial code (described in section 3.4.4), and recurse on all child

nodes whose count is greater than zero. The parameters of the binomial code are the count

of the parent, and the symbol bias θ, as shown in equation (7.1). The tree can be traversed

in any order that visits parents before their children.

This encoding process is invertible, allowing perfect recovery of the tree. The same traversal

order must be followed, and both N and L must be known (to recover the root node’s count,

and to determine which nodes are leaf nodes). Depending on the application, N or L can

be transmitted first using an appropriate code over integers, such as those in sections 2.2

or 3.4.8. A concrete encoding and decoding procedure using a depth-first pre-order traversal

of the tree can be found in code listing 7.1.

Application to SHA-1 sums. For a collection of N SHA-1 sums, the depth of the binary

tree is L = 160, and the root node contains the integer N .
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Coding algorithm for multisets of fixed-length sequences

ENCODING DECODING

Inputs: L, binary tree T

A. Encode N , the count of T ’s root node, us-
ing a code over positive integers.

B. Call encode node(T ).

Input: L Output: binary tree T

A. Decode N , using the same code over pos-
itive integers.

B. Return T ← decode node(N, L).

subroutine encode node(t):

If node t is a leaf:

1. Return.

Otherwise:

1. Let t0 and t1 denote the children of t,
and n0 and n1 the children’s counts.

2. Encode n1 using a binomial code, as
n1 ∼ Binomial(n0 + n1, θ).

3. If n0 > 0, call encode node(t0).

4. If n1 > 0, call encode node(t1).

subroutine decode node(n, l):

If l > 0 then:

1. Decode n1 using a binomial code,
as n1 ∼ Binomial(n, θ).

2. Recover n0 ← (n− n1).

3. If n0 > 0, then:
t0 ← decode node(n0, l − 1).

4. If n1 > 0, then:
t1 ← decode node(n1, l − 1).

5. Return a new tree node with count n
and children t0 and t1.

Otherwise, return null.

Code listing 7.1: Coding algorithm for binary trees representing multisets of binary se-
quences of length L. The form and construction of the binary tree are described in sec-
tion 7.2.1. Each tree node t contains an integer count n and two child pointers t0 and t1. The
counts of the children are written n0 and n1. If n0 and n1 are zero, t is deemed to be a leaf,
and vice versa. T denotes the tree’s root node.
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If the SHA-1 sums in the collection are random, then the distribution over the individual

bits in each sequence is uniform, making a binomial code with bias θ = 1
2

an optimal choice.

However, if we expect the collection to contain duplicate entries at a rate greater than chance,

the distribution over the counts is no longer binomial with a fixed bias; in fact, the bias might

then be different for each node in the tree. In such a case, a Beta-binomial code may be more

appropriate, as it can learn the underlying symbol probability θ rather than assuming it to

have a particular fixed value:

n1 ∼ BetaBin(n, α, β)

n0 = n− n1

(7.2)

A Beta-binomial coding procedure was described in section 3.4.5. The tree coding method

of code listing 7.1 can be modified to use a Beta-binomial code by replacing the encoding

and decoding calls in the subroutine accordingly. In the experiments, the parameters of the

Beta-binomial code were set to α = 1
2

and β = 1
2
.

The practical performance of the algorithm on multisets of SHA-1 sums is shown in Fig-

ure 7.2. The multisets used in this experiment contain no duplicate hashes, so the com-

pression achieved by the algorithm really results from exploiting the order-invariance of the

multiset rather than any redundancy among the hashes. (When redundancy is introduced,

the Beta-binomial code wins over the binomial code; but this scenario is not shown in the

graph.)

7.3 Collections of binary sequences of arbitrary length

This section generalises the tree coding method to admit binary sequences of arbitrary length.

Two approaches are considered for encoding the termination of sequences in the tree: the

first approach covers collections of self-delimiting sequences, which allow the tree to be com-

pressed without encoding additional information about termination. The second approach,

for arbitrary sequences, assumes a distribution over sequence lengths and encodes sequence

termination directly in the tree nodes. For either approach, the same binary tree structure is

used as before, except that sequences stored in the tree can now have any length.

7.3.1 Compressing multisets of self-delimiting sequences

Self-delimiting sequences encode their own length, i.e. it can be determined from the sequence

itself whether further symbols follow or the sequence has ended. Many existing compression

algorithms produce self-delimiting sequences, e.g. the Huffman algorithm, codes for integers,

and suitably defined arithmetic coding schemes. A multiset of such self-delimiting sequences
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Figure 7.2: Practical compression performance of the fixed-depth multiset tree compressor
on multisets of SHA-1 sums. For each position on the x-axis, N uniformly distributed 64-
bit random numbers were generated and hashed with SHA-1; the resulting multiset of N
SHA-1 sums was then compressed with each algorithm. The winning compression method
is code listing 7.1 using a binomial code, where N itself is encoded with a Fibonacci code.
The shaded region indicates the proportion of information used by the Fibonacci code. The
theoretical limit is 160− 1

N
log2 N ! bits, assuming N is known to the receiver. For comparison,

gzip was used to compress the concatenation of the N SHA-1 sums; reaching, as expected, a
compression rate of 160 bits per SHA-1 sum.
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Figure 7.3: Experimental compression performance of various algorithms on multisets of
self-delimiting sequences. For each position on the x-axis, a multiset of N self-delimiting
sequences was generated by taking N uniformly distributed integers between 1 and 100 000
and encoding each with a Fibonacci code (described in section 2.2.4). The multiset of the
resulting code words was then compressed with each algorithm.
The y-axis shows the compressed size in bits divided by N . The flat concatenation of the
sequences in the multiset is included for reference (achieving zero compression). For compari-
son, the source multisets of integers (rather than the multisets of sequences) were compressed
directly with a Dirichlet-multinomial multiset compressor, as described in section 5.5.1. The
(barely visible) shaded regions indicate the amount of information taken up by the Fibonacci
code to encode N itself.

has the property that for any two distinct sequences in the multiset, neither can be a prefix

of the other.

Consider the tree corresponding to such a multiset of binary strings. Because of the prefix

property, all sequences in the tree will terminate at leaf nodes, and the counters stored in child

nodes always add up to the counter of the parent node. Consequently, the same compression

technique can be used as for fixed-length sequences. Code listing 7.1 applies as before, with

the exception that the end-of-string detector in the decoder must be modified to detect the

end of each self-delimiting sequence.

Compressing arbitrary multisets. Consider a multiset M of objects from an arbitrary

space X , whose elements can be independently compressed to self-delimiting binary strings

(and reconstructed from them). Any such multiset M can be losslessly and reversibly con-

verted to a multiset W of self-delimiting sequences, and W can be compressed and decom-

pressed with the tree coding method as described above.

Alternative. A random multiset M is most effectively compressed with a compression

algorithm that exactly matches M’s probability distribution; we’ll call such an algorithm a
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direct code for M. When a direct code is not available or not practical, the indirect method

of first mapping M to W might be a suitable alternative.

Experiment. Experimental results of this approach on random multisets of self-delimiting

sequences are shown in Figure 7.3. Each multiset was generated by drawing N uniform

random integers and converting these integers to self-delimiting sequences with a Fibonacci

code (see section 2.2.4).2 As expected, the Beta-binomial variant of the tree coder wins over

the binomial variant when the number of repeated elements increases (as N exceeds 100 000).

Note how the compression rate of the Beta-binomial tree code on the multisets of sequences

follows the same trajectory as the (optimal) Dirichlet-multinomial encoding of the underlying

multisets of integers (from which the multisets of sequences were produced). The gap is

essentially the KL-divergence between the uniform distribution and the implicit distribution

of the Fibonacci code (as plotted in Figure 2.1).

Self-delimiting sequences can also be produced with an arithmetic coder. In that case, arith-

metic coding is used twice: first to compress each element to a binary string, and second to

compress the resulting multiset of binary strings. The elements x ∈Mmust be independently

and identically distributed, as their binary string representations have to be decodable in any

order (which makes it impossible to use a model that adapts from one x to the next).

This method may be useful when a direct multiset code (such as those described in section 5.5)

cannot be constructed, or when the distribution over elements is not accessible. This tree

coding technique can be used to structurally compress nearly any collection of elements whose

members can be mapped to self-delimiting binary sequences. One of the drawbacks is that

the one or two bit overheads incurred by the arithmetic coder when mapping the individual

elements to binary sequences will accumulate, scaling linearly with the number of elements.

However, for large enough multisets, the savings will eventually be worth it.

7.3.2 Encoding string termination via end-of-sequence markers

Consider now a multiset containing binary sequences of arbitrary length, whose sequences

lack the property that their termination can be determined from a prefix. This is the most

general case. In this scenario, it is possible for the multiset to contain strings where one is a

prefix of the other, for example 01 and 011. To encode such a multiset, string termination

must be communicated explicitly for each string. Luckily, the existing tree structure can be

used as before to store such multisets; the only difference is that the count of a node need

not equal the sum of the counts of its children, as terminations may now occur at any node,

not just at leaf nodes. Both child counts therefore need to be communicated. An example of

such a tree is shown in Figure 7.4.

2The Fibonacci code was chosen for elegance. However, any code over integers could be used, e.g. an
exponential Golomb code (Teuhola, 1978) or the ω-code by Elias (1975).
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The binary tree representing the multiset:

{ 0, 00, 000, 01, 10, 10, 101, 11, 110, 111 }.

The count at each node indicates the number of strings
starting with that node’s prefix. For example, there
are 10 strings starting with the empty string, 4 starting
with 0, and 6 starting with 1, etc.
Out of the four strings starting with 0, two continue
with 0, one continues with 1, and one reached its ter-
mination.
If the root node’s count were 12 rather than 10, the
multiset would include two empty strings as well.

Figure 7.4: Binary tree representing a multiset of binary sequences of finite but arbitrary
length. This tree follows the same basic structure as the tree in Figure 7.1, but admits
sequences of variable length. The tree representation is unique for each multiset.

The counter n stored in each node still indicates the number of sequences in the collection

that start with that node’s prefix. The number of terminations nT at any given node equals

the difference of the node’s total count n and the sum of its child counts n0 and n1.

Suppose that the total number N = |W| of sequences in the multiset W is distributed

according to some distribution D over positive integers, and that the length of each sequence

wn ∈ W is distributed according to some distribution L. Given D and L, a Shannon-optimal

compression algorithm for the multiset W can be derived as follows.

Form the tree representation of W, following the construction described in the previous sec-

tion. The count of the root node can be communicated using an appropriate code for D. Each

node in the tree has a count n, child counts n0 and n1, and an implicit termination count

nT fulfilling n = n0 + n1 + nT. Assuming that the bits at the same position of each sequence

are independently and identically distributed, the values of n0, n1 and nT are multinomially

distributed (given n).

The parameters of this multinomial distribution can be determined from L as follows: The

n sequences described by the current node have a minimum length of d, where d is the

node’s depth in the tree (the root node is located at depth 0). Out of these n sequences, n0

continue with symbol 0, n1 continue with symbol 1, and nT terminate here. As was shown

in section 5.7.2, the probability of a sequence which has at least d symbols to have no more

than d symbols is given by a Bernoulli distribution with bias θT(d), where:

θT(d) :=
L(d)

1−∑k<d L(k)
(7.3)
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Consequently, the number of terminations nT at depth d (out of n possible sequences) is

binomially distributed with:

nT ∼ Binomial(n, θT) (7.4)

Writing θT for the probability of termination at the local node, and θ1 and θ0 for the occurrence

probabilities of 1 and 0, the joint distribution over n0, n1 and nT can be written as follows:

(nT, n0, n1) ∼ Mult
(

n, (θT, θ0 (1− θT) , θ1 (1− θT))
)

(7.5)

where θ1 = 1−θ0. The encoding procedure for this tree needs to encode a ternary (rather than

binary) choice, but the basic principle of operation remains the same. Code listing 7.1 can be

modified to encode (nT, n0, n1) using a multinomial code, e.g. as described in section 3.4.6.

Note that, as described above, θT is a function of the length distribution L and the current

node depth d. In principle, it is possible to use a conditional length distribution that depends

on the prefix of the node, as the node’s prefix is available to both the encoder and the decoder.

Similarly, θ0 and θ1 could in principle be functions of depth or prefix.

7.4 Conclusions

This chapter proposed a novel and simple data compression algorithm for sets and multisets of

sequences, and illustrated its use on collections of cryptographic hash sums, and on multisets

of Fibonacci-encoded integers. The approach of this method is based on the general principle

that one should encode a permutation-invariant representation of the data, in this case a tree,

with a code that matches the probability distribution induced by the data’s generative process.

When the sequences in the source multiset are iid and random from a known distribution, the

tree is most effectively compressed using code listing 7.1 with a binomial code; otherwise, a

Beta-binomial code can be used instead. The Beta-binomial code is universal in that it learns

the symbol distribution of the sequences in the multiset (even for symbol distributions that

are position- or prefix-dependent).

One might regard the coding algorithms presented in this chapter as either lossless compres-

sion for sets and multisets, or lossy compression methods for lists: when the order of a list of

elements isn’t important, bandwidth can be saved.

Note. A version of this chapter was presented at the Data Compression Conference in 2014.
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Chapter 8

Cost-sensitive compression and

adversarial sequences

This chapter considers the following two ideas, and gives examples of their applications:

1. Lossless compression algorithms are designed to produce compact representations of

input objects, minimising the transmission cost of the output sequence. If the symbols

in the output alphabet have equal transmission costs, then the task of minimising the

cost is equal to the task of minimising the number of output symbols, and the optimal

distribution over those output symbols (i.e. the target distribution) is uniform. However,

if the output symbols do not have equal transmission costs (such as in Morse code),

the optimal target distribution is not uniform. Arithmetic coding can be generalised

to compress to non-uniform target distributions, and section 8.1 shows how to compute

the optimal target distribution for a given alphabet and associated transmission costs.

2. Any compression algorithm necessarily defines a probability distribution over its input

objects. This distribution can (in principle) be used to generate samples, or to com-

pute worst-case input objects for which the compression algorithm produces the longest

possible output sequences. For context-sensitive compressors (such as PPM, BPPM or

LZW), section 8.3 discusses adversarial input sequences that are constructed by greedily

choosing a least predicted symbol for each position in the sequence. While these greedy

adversarial sequences are not necessarily worst-case inputs to the compressor for which

they were constructed, they are worse than random sequences and have some surprising

properties that are illustrated at the end of this chapter.

155
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8.1 Cost-sensitive compression

Most compression algorithms are designed to compress data into a sequence of uniformly

distributed output symbols. When the costs of transmitting each output symbol are equal,

the uniform target distribution minimises the expected transmission cost of the compressed

output. This section considers what happens when the transmission costs of the output

symbols are not equal, and shows how to compute the optimal target distribution given the

transmission costs of the output symbols.

The arithmetic coding algorithm can be amended to directly produce output symbols from a

different target distribution. Alternatively, a ‘two-pass approach’ can be used by applying the

standard arithmetic coding algorithm twice: first to compress the input object into a sequence

of uniformly distributed bits, and second to decompress those bits from the first pass into

symbols of the chosen target distribution. An example application is given in section 8.1.2.

8.1.1 Deriving the optimal target distribution

Given an output alphabet Y and associated symbol costs cy, let’s derive the optimal output

symbol probabilities py such that the rate of information transmission (per unit of transmission

cost) is maximised. The rate is equal to the average information content per symbol H divided

by the average symbol cost C:

R =
avg. information per symbol

avg. cost per symbol
=

H

C
=

∑
py log 1

py
∑

pycy

(8.1)

We wish to find the values of the py that maximise R subject to the constraint that the py

sum to unity. This maximum can be found e.g. using a Lagrange multiplier λ that enforces

the constraint:

G(p) := R(p) + λ





(
∑

y∈Y
py

)

− 1



 (8.2)

At the location p where R(p) has its maximum, the partial derivative with respect to py must

be zero:

∂G

∂py

=
∂

∂py

(
H

C
+ λ

∑

py

)

= 0 (8.3)

The partial derivative is equal to:

∂G

∂py

=
∂

∂py

(
H

C
+ λ

∑

py

)

(8.4)

=
−H

C2

∂C

∂py

+
1

C

∂H

∂py

+ λ (8.5)
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=
−H

C2
cy +

1

C

(

log
1

py

− 1

)

+ λ (8.6)

And solving for py gives:

log
1

py

=
H

C
cy + 1− λC (8.7)

py = exp
(

−H

C
cy

)

· exp (1− λC) . (8.8)

Finding λ to make the py sum to unity is equivalent to finding the normalising constant Z:

py =
1

Z
exp

(

−H

C
cy

)

(8.9)

Unfortunately, equation (8.9) is recursive as both H and L contain py, but numerical methods

can typically be used to determine py.

Example. Consider the case of a binary symbol alphabet { , } where the transmission

cost of symbol is twice that of symbol . Clearly, a uniform distribution over { , }
isn’t optimal. Choosing Pr( ) = 2

3
and Pr( ) = 1

3
may seem tempting, as this distribution

spends (on average) equal expense on each symbol type. However, this distribution does

not achieve the optimal information rate, either. The solution to equation (8.9) reveals the

optimal distribution to be:

Pr( ) =

√
5− 1

2
=

1

ϕ
= 0.618033988749895 . . .

Pr( ) =
3−
√

5

2
=

ϕ− 1

ϕ
= 0.381966011250105 . . .

(8.10)

where ϕ = 1.618033988749 . . . is the golden ratio. A graph of the communication rate as a

function of Pr( ) can be found in Figure 8.1 (on page 160). The optimal rate R, achieved for

Pr( ) = 1
ϕ

, equals log2 ϕ bits per unit cost (where log2 ϕ ≈ 0.694241913630).

8.1.2 Optimising Morse code

A example of a coding system whose symbols have unequal transmission costs is the Morse

code, which predates the foundational work on information theory and coding by Shannon

(1948) by more than a century. Morse code was designed to be used by human operators for

long distance communication.

Morse code was first described by Samuel Morse (1840) in his patent application for the

“American Electro-Magnetic Telegraph”, and most likely developed in close collaboration

with Alfred Vail, who described it in a book on the same subject (Vail, 1845). The original

code employed several different signal durations, and was changed significantly by Carl Au-
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A 8 J 16 S 8
B 12 K 12 T 6
C 14 L 12 U 10
D 10 M 10 V 12
E 4 N 8 W 12
F 12 O 14 X 14
G 12 P 14 Y 16
H 10 Q 16 Z 14
I 6 R 10 4

Table 8.1: International Morse Code, as specified by ITU-R (2009). The code words
are composed of two signals { , }, separated by pauses. Signal has length 1,
and has length 3. Pauses between signals (in the same letter) have length 1.
Pauses between letters have length 3. Pauses between words have length 7. Example:
“ ”.
The numbers in the table indicate the total length of each code word (including pauses).

gust von Steinheil and Friedrich Clemens Gerke for use on the European continent (Gerke,

1851). The combination of Gerke’s three-signal and Steinheil’s two-signal code resulted in the

International Morse Code which is still in global use today. International Morse Code was

standardised multiple times (and occasionally updated), most recently by ITU-R (2009).

A table of the code (excluding numerals and punctuation) is shown in Table 8.1. The code

defines two signals ( and ), where the long signal is three times as long as the short

signal . The Morse code table maps each letter of the Latin alphabet to short sequences

of signals separated by pauses; somewhat reminiscent of a symbol code (as described in

section 2.1).

If a computer system (rather than a human) were to communicate using Morse code signals,

it would be sensible to abandon the code word table entirely. Using a probabilistic language

model and arithmetic coding will make much better use of the bandwidth, directly producing

a stream of :s and :s (separated by pauses).

The intersignal pauses, as defined by International Morse Code, have the same duration as

the short signal . Let’s simplify by assuming that only these short pauses are used. Writing

“ ” for “ + pause”, and “ ” for “ + pause”, what probability distribution over { , }
maximises the rate of communication in such a system? Adding up, the duration of is

exactly twice the duration of . Consequently, the output distribution which achieves the

optimal communication rate follows the golden ratio, as given in equation (8.10).

As it may seem a bit optimistic to expect human operators to run arithmetic coding in

their heads when communicating in Morse signals, let’s briefly revisit the Morse code table

and reflect on its effectiveness for communicating human text. The lengths of the Morse
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A 6 − J 14 − S 10 +

B 14 + K 14 + T 6
C 12 − L 10 − U 12 +

D 10 M 12 + V 14 +

E 4 N 8 W 12
F 12 O 8 ≡ X 14
G 12 P 12 − Y 14 −

H 10 Q 14 − Z 14
I 8 + R 10 4

Table 8.2: A new Morse code for English: allocation of code words based on contemporary
English letter frequencies by Norvig (2013), as shown in Figure 4.1 (on page 63). Signal
durations and pauses are identical to International Morse Code (see Table 8.1). The existing
code words for D E F G H N R T W X Z were kept, as they were already optimal. Code words for
A C J L P Q Y were shortened by 2 units, and code words for B I K M S U V were lengthened by
2 units. The code word for O was shortened by 6 units. The code word was avoided for
practical reasons (compatibility with existing code words for digits and punctuation marks),
otherwise the code is optimal. Example:
“ ”

code words should be chosen such that the expected message duration is minimised: the

shortest code word should go to the most frequent letter. Since the code words are separated

by a forced interletter pause of length 3, there is no need for the code to have the prefix

property. An optimal mapping from letters to code words can therefore be produced simply

by generating all Morse code words in order of increasing length, and assigning each to the

next most frequent letter until all letters have been allocated.1

A revised Morse code table for English, constructed as described above, is presented in Ta-

ble 8.2. A comparison of the communication rates of traditional and new Morse code is given

in Table 8.3. The table also shows the communication rates of a PPM language model whose

arithmetic coder directly produces a sequence of { , } signals.

Aside. It may be surprising that International Morse Code (as shown in Table 8.1) assigns a
relatively long code word ( ) to the letter O, suggesting a much lower occurrence probability
than typically found in English. The original code words might have been constructed for German
(not English) letter frequencies, where O occurs much more rarely.

1The number of possible Morse code words for any fixed length is given by a Fibonacci number. A closed
form for Fibonacci numbers also involves the golden ratio ϕ:

Fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1 −

√
5

2

)n

=
1√
5

(
ϕn − (−ϕ)−n

)
(8.11)



160 CHAPTER 8. COST-SENSITIVE COMPRESSION

C
o
m

m
u
n
ic

at
io

n
ra

te
[b

it
s

p
er

u
n
it

co
st

]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

communication rate

OPT

2/3
1/2

Pr( )

Figure 8.1: Communication rate of an output symbol alphabet { , } with unequal symbol
durations, as a function of Pr( ) = 1 − Pr( ). The duration of is twice that of . The
optimum is located at 1

ϕ
, the inverse of the golden ratio.

Static Method units u / sym time to transmit (at 40 u/s)

Old Morse code (Table 8.1) 37345863 7.612 258 hours 54 mins

New Morse code (Table 8.2) 35758353 7.288 248 hours 17 mins

Method Pr( ) Pr( ) units u / byte time to transmit (at 40 u/s)

PPMD5 1/2 1/2 32382056 6.129 224 hours 53 mins

PPMD5 2/3 1/3 31340450 5.931 217 hours 39 mins

PPMD5 ϕ−1 1− ϕ−1 31090434 5.884 215 hours 55 mins

Table 8.3: Comparison of different Morse coding systems. The methods were compared on
shakespeare.txt, the concatenated works of Shakespeare. The table shows each method’s
communication rate in units per symbol, where one time unit equals the duration of one ,
as described in Table 8.1.
For the static methods (old and new Morse code), the input sequence was made case insensi-
tive, stripped of all punctuation and newlines, and white space was folded into single spaces.
For the adaptive methods, the original (unsimplified) sequence was used. The adaptive meth-
ods used PPM (depth 5, escape method D) to compress the input sequence, differing only in
the choice of emission probabilities Pr( ) , Pr( ).
For illustration, the final column shows the time it would take to transmit the encoded message
at 40 units per second.
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8.2 Compression and sampling

An exact sampling algorithm for a probability distribution D produces independent samples

from D, given a source of randomness. Efficient exact sampling algorithms exist for many

basic probability distributions, see e.g. Devroye (1986) for descriptions of such algorithms.

Exact sampling methods can be derived even for some complicated distributions, a notable

family of methods being coupling from the past (Propp and Wilson, 1996, 1997). In general,

however, it is rather difficult to design exact sampling algorithms with reasonable resource

costs, especially for posterior distributions from complex probabilistic models. Approximate

sampling algorithms are therefore often used in practice.

It turns out that any probabilistic model that can be used with an arithmetic coder can also

be used to produce exact samples. Making an arithmetic decoder decompress a stream of

uniformly distributed random bits results in an exact sample from the probabilistic model it

is interfaced to. The exact sample is produced using only the minimal number of random bits

required (Cover and Thomas, 2006, section 5.11). As this process is invertible, the matching

arithmetic encoder can reconstruct, for any given element of the sample space, the exact

sequence of (originally random) bits that the decompressor used for sampling it.

Note that this “sampling by decompression” scheme is only a valid procedure if the compres-

sor defines a bijective mapping between the input objects and output sequences; otherwise,

decompression of a random sequence can produce biased samples or undefined behaviour.

Samples from a probabilistic model can be useful for computing approximate expectations,

or for visualising and understanding some of the model’s properties.

Table 8.4 shows sequences that were sampled from a fixed-depth BPPM after being trained

on Alice’s Adventures in Wonderland.

8.3 Worst case compression and adversarial samples

No lossless compression algorithm can expect to compress a perfectly random input sequence.

In particular, for an input sequence that is constructed by drawing symbols uniformly at

random from an alphabet X , the best possible compression effectiveness that can be expected

is log2|X | bits per symbol, the entropy of the uniform distribution over X . (In fact, a typical

adaptive compressor will do slightly worse, as it has to learn the distribution and also encode

the length of the sequence.)

Figure 8.4 on page 168 (also Figure 2.3b on page 36) shows the compression effectiveness of

various compression algorithms on a pseudo-random input sequence, as a function of input

length. This random input sequence (Seq. I) was created by making independent draws from

a uniform distribution over an alphabet of 64 symbols (out of 256 possible symbols), using
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D =0: Compress esset’ k@ rgeO ,n d uea pmitilte@’ eur r,’epeei iisosoa@i -a.e sei h . . .

D =1: Compress helllan helithed t fithorye, t t sats cut ore mphot Tigay a way aw t . . .

D =2: Compress ne over-@ that she wasid Theen ance de and said som thiteavery@eve has . . .

D =3: Compress sizes!’@@@ ‘One for hairst thing to@here I once fixtig curiously; ‘lipp . . .

D =4: Compress soon at or you nonsense!’ Becaused soon as if a disapples well my dears . . .

D =5: Compress his head. ‘Then your Majesty,’ the sented at once to usurprised to him, . . .

D =6: Compress him), whatever,’ said the small@passage, I’ll each other question is, Wh . . .

D =7: Compress him! Pinch@him! Pinch@himself from beginning again?’ the Hatter; ‘What . . .

D =8: Compress him! Pinch@him! Off with his shoulder with all sorts of the other. ‘I . . .

D =9: Compress him! Pinch@him! Off with his nose@ Trims his belt and@day! Why, I . . .

D =5: Never this head pretending, I gloves when the pictured to the@reply.@@ ‘Why,’ sa . . .
D =5: Never were out as he went branches on whis which way of edition?’@@ ‘It is all f . . .
D =5: Never way of sitting to do wish I have and@she was very sudden change, as@she hea . . .
D =5: Never you’ve no archbishop could be sure; seemed to@ cur, "You our . . .
D =5: Never saw he@jumped upon it@would terms without@perhaps out at all, while them, t . . .
D =5: Never crone with curious dropped in croquet.’@@ She@could YOU with his eyes a Ha . . .
D =5: Never could have ground,@‘and not remarked: ‘UNimportant howling--@people joys . . .
D =5: Never coming@serpent, afore.’@@ Alice in at here. Alice replied right size; but . . .
D =5: Never complainly now the seated the found the blows slivery: other Williamond . . .

D =5: Never comprove I didn’t@believe to@yet hastily replied: ‘how am I to get use . . .

D =5: Never compressinging that Alice asked Alice with you join to beginning but I ment . . .

D =5: Never compressed to be a soldiers and shut his began his pocket!’@@ Alice did th . . .

D =5: Never compressed, and@serpent in.@@ ‘We indeed!’@@ ‘They all remark, ared, ‘tha . . .

D =5: Never compress it led in a minutes nose, in a long nonsense!’ (W-in March Hare wa . . .

D =5: Never compress was there’s no used to the@triump!’@@ ‘Repeat@sorts@of life, and, . . .

D =5: Never compress with his time whether laddressed, ‘If you like it sort in a great . . .

D =5: Never compress with the Mouse@I’m ceived up on to put me, but never the grow at t . . .

D =5: Never compress with the March Hare tarts of March Hare were says it?’ he song abo . . .

D =5: Never compress without key; and graved):@ * For supp . . .

D =5: Never compress without kindly enjoy@ Waition a sharply wish I hard if it . . .

D =5: Never compress without knocking, she little watch an@remember@even was this voice . . .

D =5: Never compress without every,@cause@I’m afraid in asking, and green . . .

D =5: Never compress without again, they’re done@inch; and the right used at him with o . . .

D =5: Never compress without a moment by the English,’ the Rable door, and she did not, . . .

Table 8.4: String continuations sampled from BPPM (α = 0, β = 1
2
) of various context

depths D, pre-trained on Alice in Wonderland by Lewis Carroll (1865), file alice29.txt of
the Canterbury Corpus. The shaded part of each line marks the string that BPPM was asked
to continue.
Each continuation was produced by incrementally sampling from BPPM’s sequence of pre-
dictive symbol distributions (conditional on the preceding symbols). Newline characters are
represented by @-symbols. To make the above samples reproduceable, the seed of the pseudo-
random number generator was initialised to 42 for each sequence.
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a pseudo-random number generator with a fixed random seed. As one would hope, most

compressors approach a compression rate of 6 bps.2

Interestingly, random input sequences aren’t necessarily the worst-case input of a compres-

sion algorithm. Compression methods can, in addition to obtaining exact samples of their

distributions, be used to generate non-typical “worst-case” samples: we can inspect the com-

pressor’s distribution and pick an element that’s least predicted. In practice, a generic search

for worst-case inputs can be prohibitively expensive, especially for complicated adaptive se-

quence compressors.

Instead of searching for worst-case sequences, we can linearly construct greedy adversarial

sequences that are guaranteed to be worse than (or as bad as) sequences of independent and

uniformly distributed random symbols. The following section describes the construction of

such sequences and documents some of their curious properties.

8.3.1 Adversarial sequences

Adaptive sequence compression algorithms like PPM or the Sequence Memoizer define a series

of dependent predictive probability distributions. These distributions can be used to play an

adversarial game where, for each predictive distribution, an element with least probability

mass is picked. If there are several such elements, we could pick according to some determin-

istic rule (e.g. in the order of the alphabet) or uniformly at random. Both of these policies

result in interesting sequences.

Note that the greedy construction described here might not necessarily produce an overall

worst-case input sequence; however, the sequential adversarial selection of input symbols is

(by construction) worse for the victim than picking symbols uniformly at random. This effect

is shown in Figure 8.2.

Finite depth Markov models

Let’s look at some adversarial sequences for simple sequence models, using the binary input

alphabet {0, 1}, where both 0 and 1 have equal probability mass a priori.

To start, consider an adaptive zero-context symbol model, such as the Dirichlet process com-

pressor from section 4.2.2, or a depth one BPPM (with D = 1, β = 0 and α > 0). The

resulting adversarial sequence (with alphabetic precedence rule) is:

01010101010101010101010101010101010101010101010101010101. . .

2As the sequence is pseudo-random, it is technically deterministic. A strong AI compressor could, in
principle, crack the random seed and compress the sequence much better than playing against chance. No
such compressor has ever been built, and a general non-approximate AI compressor is uncomputable (Hutter,
2004).
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Figure 8.2: The compression effectiveness of two algorithms (BPPM and LZW), each on a
random sequence (Seq. XII, uniformly distributed symbols from the set {0–9, A–F}), and on
an adversarial sequence (Seq. X for BPPM, and Seq. XX for LZW).
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Figure 8.3: The compression rates of PPMD (for various settings of the context depth D)
on Seq. XIV, an alphabetic adversarial sequence for BPPM / the Sequence Memoizer using a
subset of 8 symbols {0–7} from the byte alphabet. The adversarial sequences makes PPM’s
compression rate trace out D−1 hills, before making a final approach to 3 bits per symbol.
A PPM with unbounded depth (such as PPM*) produces hills ad infinitum.
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The above sequence arises as follows: the predictive distribution for the first symbol has

Pr(0) = Pr(1) = 1
2
, so 0 is chosen because it comes first in the alphabet. The predictive

distribution for the second symbol (conditional on the first) is:

Pr0 (0) =
1 + α

2

1 + α
and Pr0 (1) =

α
2

1 + α
. (8.12)

The adversary therefore picks 1, the less probable, for the second symbol. For the third

symbol, both symbols are equally probable again: Pr01 (0) = Pr01 (1) = 1
2

and the alphabetic

rule again chooses 0. The sequence continues with 01 repeating forever: at odd positions,

each symbol has probability 1
2

and is chosen by alphabetic precedence, and the symbols at

even positions are necessarily the opposite of the immediately preceding symbol.

Consider now the corresponding adversarial sequence for BPPM with depth 1:

010011100110011001100110011001100110011001100110011001100. . .

This sequence generates all bigrams, with overlapping digits, and ends up repeating 1100

ad infinitum. A slightly puzzling property might be the irregularity at the beginning of the

sequence: after 010011, a 1 is picked rather than a 0, although both 0 and 1 have occurred

three times each. The reason why BPPM gives lower probability to 1 in this context is because

of the shallow update (1TPD) rule: 0 creates a new table for three contexts (ε, 0 and 1),

whereas 1 creates a new table for only two contexts.

Here is the adversarial sequence for BPPM with depth 2:

010011101110000101110001011100010111000101110001011100010111. . .

Much the same thing happens here: all bigrams and trigrams are generated, and the sequence

eventually becomes periodic. A similar pattern emerges for the adversarial sequence of context

depth 3:

0100111011000010100001 111100101101000011110010110100001111001011010000

These characteristics are not limited to the binary alphabet. For example, here is the adver-

sary sequence for BPPM depth 1 on the ternary alphabet {a, b, c}:

abcacbaabbccbbaccaabbcbaccaabbcbaccaabbcbaccaabbcbaccaabbc . . .

The cyclic subsequences (01, 1100, 00010111, baccaabbc, etc) which appear in the periodic

part of the adversarial sequence are de Bruijn sequences (de Bruijn, 1946). A K-ary de Bruijn

sequence is a cyclic arrangement of symbols such that every possible subsequence of length

K occurs exactly once. The adversarial sequences for BPPM of any finite context depth (and

any finite alphabet) eventually settle in a de Bruijn cycle that repeats indefinitely.
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Infinite-depth Markov models

In the case of a Markov model with unbounded depth, adversarial sequences do not have peri-

odic fixed-length repetitions. For example, the following sequence (Seq. XVIII) is adversarial

for the Sequence Memoizer, with all discount parameters set to β = 1
2
:

010011101100001010001101011111001000000111101001011011100010011001
111111011110000010001011101010110010101001101101000011000111001100
000000101100010101110010111101101100110100111100111000011101000100
001001001010010001111101011010100000110111111000110010011111000010
000010101010111100101000010111111111001101110111001111011101001100
010001100001101000111011111011001000100101110000001001110010010000
111111010000000110011001011001110101110110101100000111000111100010
110100100110101010001010011100010100000010100101011011011110101001
011111010011101001000001111100111110111000010110110001101100000011
010100111111001011010111000110100101000100111101011110100011001110
01110...

The sequence continues indefinitely but has no periodic repetitions. Note that the demand for

additional context depth grows very slowly: The adversarial sequence generator will generate

as many context misses as possible, exhausting each depth completely before moving on to the

next. For example, the adversarial sequence of length 100 000 for the Sequence Memoizer’s

“batch Deplump (UKN)” method, on an alphabet with 64 symbols, can be generated much

more cheaply using BPPM with fixed depth D =3. Up to this length, the sequences produced

by both algorithms are identical.

8.3.2 Some results

As an exploratory piece of research, a collection of adversarial and random sequences were

generated for various alphabet sizes (each a subset of the 256 symbols in the byte alphabet),

and compressed with different algorithms.

The somewhat striking results of this experiment are documented in a series of graphs over

the next few pages (166–178). Each graph shows the compression rates (in bits per byte) of

various algorithms on one particular sequence, as a function of input length. Each sequence

is described below the plot, indicating its type, symbol set, and the first few symbols in the

sequence. The sequences are also summarised in Table 8.6.

The compression rates were computed by compressing the first N symbols of the sequence,

and were plotted on a log scale as a function of N (with N typically ranging from 10 to

10 000 000).
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Key Label Description
LZW ∗ LZW algorithm by Welch (1984), with arithmetic coding,

uniform dictionary indices, and unbounded memory.
compress Standard compress (LZW) by Thomas et al. (1985).
gzip Standard gzip (DEFLATE) by Gailly and Adler (1992).
bzip2 Standard bzip2 (BWT) by Seward (2010).
LZMA LZMA by Pavlov (2011), via lzip by Dı́az Dı́az (2013).
PPMII PPMII by Shkarin (2001a).
SM / BPPM ∗ Sequence Memoizer / BPPM.
PPMD ∗ Classic PPM, escape method D, various context depths.
PPMD [D=1] ∗ Classic PPM, escape method D, with context depth D =1.
MTF ∗ Move-to-front encoding + adaptive index compression.
CSE Prototype of “Compression by substring enumeration” by

Dubé and Beaudoin (2010).
DMC Dynamic Markov compression by Cormack (1993).
CTW Context tree weighting by Willems et al. (1993).

Table 8.5: Index of compression methods used in this chapter. Methods marked with ∗ are
my own implementations. All other methods are implementations of the stated algorithm by
the stated authors. Additional details and references can be found in Table A.1 (page 186).

Seq U Symbol subset Type Figures
I 64 { , 0–9, A–Z, a–z, !} uniformly random 8.4 (see also page 36)

II 64 { , 0–9, A–Z, a–z, !} random adversarial 8.5
III 64 { , 0–9, A–Z, a–z, !} alphabetic adversarial 8.6
IV 256 {0016–FF16} alphabetic adversarial 8.7
V 256 {0016–FF16} random adversarial 8.8 and 8.24

VI 256 {0016–FF16} uniformly random 8.9 and 8.24
VII 32 {A–Z, @, [, \, ], ˆ, } uniformly random 8.10

VIII 32 {A–Z, @, [, \, ], ˆ, } alphabetic adversarial 8.11
IX 32 {A–Z, @, [, \, ], ˆ, } random adversarial 8.12
X 16 {0–9, A–F} alphabetic adversarial 8.13, 8.2 and 8.3

XI 16 {0–9, A–F} random adversarial 8.14
XII 16 {0–9, A–F} uniformly random 8.15 and 8.2

XIII 16 {0–9, A–F} increasing integers 8.16
XIV 8 {0–7} alphabetic adversarial 8.17
XV 8 {0–7} uniformly random 8.18

XVI 4 {a, g, c, t} alphabetic adversarial 8.19
XVII 4 {a, g, c, t} uniformly random 8.20 (see also page 204)

XVIII 2 {0, 1} alphabetic adversarial 8.21 (see also page 166)
XIX 2 {0, 1} uniformly random 8.22
XX 16 {0–9, A–F} alphabetic adversarial (LZW) 8.23 and 8.2

XXI 256 {0016–FF16} random adversarial (LPAQ1) 8.24

Table 8.6: Index of synthetic sequences used in this chapter. U denotes the number of
unique symbols in the sequence. With the exceptions of Seq. XX and Seq. XXI, all adversarial
sequences were constructed with SM / BPPM as the victim.
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Random and adversarial sequences on a 6-bit alphabet
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Fig: 8.4 Seq: I 64 Symbols: { , 0–9, A–Z, a–z, !}, Type: uniformly random.
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Fig: 8.5 Seq: II 64 Symbols: { , 0–9, A–Z, a–z, !}, Type: random adversarial. Victim: SM / BPPM.
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Fig: 8.6 Seq: III 64 Symbols: { , 0–9, A–Z, a–z, !}, Type: alphabetic adversarial. Victim: SM / BPPM.

Figures 8.4, 8.5 and 8.6 show the compression effectiveness of selected compression algo-
rithms on three special sequences. Seq. I is composed of random symbols that were drawn
uniformly from a pre-selected subset of 64 (out of 256 possible) byte values. Seq. II is a
random adversarial sequence for BPPM (resp. Sequence Memoizer with UKN approximation),
where ties are resolved by chosing from the lowest probability symbols at random. Seq. III
is also adversarial (for the same victim), but ties are resolved deterministically by choosing
alphabetically, which makes the sequence potentially much more predictable for non-victim
compressors.

On these adversarial sequences, and on Seq. III in particular, many compression algorithms
exhibit fairly abrupt changes in compression effectiveness, often at particular positions of the
sequence. In adversarial sequences for BPPM / Sequence Memoizer, these positions mark the
locations where all possible n-grams (of a given n) have been generated.

Compressors from the same family of algorithms tend to follow similar trajectories. For
example, compress and LZW are independent implementations of the same algorithm. (LZW
has a slight edge because it uses arithmetic coding for the dictionary indices. The point
where the compression rate of compress levels out occurs when the algorithm reaches its
built-in memory limit.)
For many compressors, the compression rate on sequences of uniformly distributed random
symbols does not follow a monotone trajectory: there are hills and valleys that look a bit like
smoothed out variants of those produced on the adversarial sequences.
The following pages showcase a series of similar graphs for random and adversarial sequences
on differently sized subsets of the input alphabet, exhibiting some interesting results.
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Adversarial sequences on an 8-bit alphabet
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Random sequences on 8-bit and 5-bit alphabets
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Adversarial sequences on a 5-bit alphabet
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Adversarial sequences on a 4-bit alphabet
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Fig: 8.13 Seq: X 16 Symbols: {0–9, A–F}, Type: alphabetic adversarial. Victim: SM / BPPM.
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Start: B37F8C62A54910DEB09AEF564183C72DAC26F9514ED087B134FCD59BA30E286715748FA6C029E3BD2 . . .
Fig: 8.14 Seq: XI 16 Symbols: {0–9, A–F}, Type: random adversarial. Victim: SM / BPPM.
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Random and deterministic sequences on a 4-bit alphabet
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Start: B0A04F4BA1E7564B7CCFE267BE6C229534D52294CA9191CC0553D06CF1B87D43F9D3A652566A7B7F7 . . .
Fig: 8.15 Seq: XII 16 Symbols: {0–9, A–F}, Type: uniformly random.
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Start: 0123456789ABCDEF101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3 . . .
Fig: 8.16 Seq: XIII 16 Symbols: {0–9, A–F}, Type: increasing hexadecimal integers.
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Adversarial and random sequences on a 3-bit alphabet
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Start: 012345670213546071425361720374051624306573152647504100227632113344556677112231415 . . .
Fig: 8.17 Seq: XIV 8 Symbols: {0–7}, Type: alphabetic adversarial. Victim: SM / BPPM.
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Start: 505027255073232536677133573611421262114265404066022160367054362174615321233535373 . . .
Fig: 8.18 Seq: XV 8 Symbols: {0–7}, Type: uniformly random.
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Adversarial and random sequences on a 2-bit alphabet
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input length (bytes)

Start: agctacgtgatcaaggccttggtcgaccattaactgcggagttccgcagaatatgtaggggctctttgcccacaaacggtg . . .
Fig: 8.19 Seq: XVI 4 Symbols: {a, g, c, t}, Type: alphabetic adversarial. Victim: SM / BPPM.
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Start: cacagtgccatggggcgttttaggctgtaacgagtgaacgtccacattaggatagttaccgtgatctacggagggcgcgtg . . .
Fig: 8.20 Seq: XVII 4 Symbols: {a, g, c, t}, Type: uniformly random.
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Adversarial and random sequences on a 1-bit alphabet
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Start: 010011101100001010001101011111001000000111101001011011100010011001111111011110000 . . .
Fig: 8.21 Seq: XVIII 2 Symbols: {0, 1}, Type: alphabetic adversarial. Victim: SM / BPPM. See page 166.
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Start: 101001011010000101111000110100100010001011101011000010011011010011101000000101010 . . .
Fig: 8.22 Seq: XIX 2 Symbols: {0, 1}, Type: uniformly random.
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Other adversarial sequences
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input length (bytes)

Start: 0123456789ABCDEF0213546879BACEDF1032475869CADBE0F251436A7B8C9D0E1F37264859EAFBDC0 . . .
Fig: 8.23 Seq: XX 16 Symbols: {0–9, A–F}, Type: alphabetic adversarial. Victim: LZW.

co
m

pr
es

si
o
n

ra
te

(b
it

s
p
er

by
te

)

 7

 8

 9

 10

1M 5M 10M 10  100  1000  10000  100000

SM / BPPM  (adv SM)
SM / BPPM  (random)

SM / BPPM (adv LPAQ)

 7

 8

 9

 10

1M 5M 10M 10  100  1000  10000  100000
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LPAQ1 (random)
LPAQ1 (adv SM)

input length (bytes)

Start: DD B6 7A EA 3E 9E 1E F2 8A 56 CF FF A6 0E 6D 2F D5 4A E6 76 97 17 F8 27 C2 5D BA ED 36 . . .
Fig: 8.24 Seq: XXI 256 Symbols: {0016–FF16}, Type: random adversarial. Victim: LPAQ1.

Figure 8.24 shows the compression effectiveness of two algorithms (BPPM and LPAQ1) on
uniform random symbols (Seq. VI), on their own random adversarial sequence (Seq. V for
BPPM, Seq. XXI for LPAQ1), and on each other’s random adversarial sequence. For both
algorithms, compressing their own adversarial sequence is harder than compressing random-
ness, which in turn is harder than compressing the other algorithm’s adversarial sequence.
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8.3.3 Discussion

Given access to a compression model’s predictive symbol distributions, it is straightforward

to construct sample sequences or adversarial input sequences for the model. However, many

algorithms (such as LZ77, LZW, LZMA, CSE) do not explicitly compute or represent these

distributions, making it difficult to construct adversarial sequences.

In principle, the predictive symbol distributions can be reverse-engineered from any given

algorithm; I did this for LZW as a proof of concept, which provided a mechanism for creat-

ing Seq. XX. Obtaining LZW’s predictive symbol distributions required significant structural

alterations to the original algorithm (Alg. 2.3), and involved summing over partial string

matches in LZW’s dictionary entries.

It appears that some adversarial sequences have interesting properties that cause compression

algorithms from different families (not just that of the victim) to exhibit strikingly different

behaviours. Sequences that are adversarial to the Sequence Memoizer (and BPPM) seem to

be particularly good at eliciting diverse reactions from different compression algorithms, and

were therefore chosen as a primary focus in this chapter.

Not all compression methods have interesting adversarial sequences. For example, adversarial

sequences for LPAQ1 (such as Seq. XXI) look very similar to sequences of uniformly distributed

random symbols (to nearly all compressors except those from the PAQ family). Figure 8.24

shows the compression effectiveness of LPAQ1 and SM / BPPM on each other’s and their own

adversarial sequences, and on uniform random symbols.

Some observations are summarised below:

• For both random and most adversarial sequences, compressors from the same family

have compression rates that tend to follow similar trajectories in the graph.

• Such graphs can reveal points at which a compressors’s resource constraints are reached

(e.g. maximum context depth, dictionary size, block size or memory usage).

• Several of the investigated adversarial sequences have locations at which the compression

rate of nearly all algorithms undergoes abrupt changes – often in different directions.

For the adversarial sequences of SM / BPPM, the nth such location corresponds to the

point in the sequence where all n-grams (of the available symbols) have been generated.

• The alphabetic adversarial sequences seem to discriminate particularly well between

different algorithms. This effect is particularly visible for Seq. III (Figure 8.6).

• Various compressors can be made to look good or bad just by truncating an adversarial

sequence at a well-chosen point. Also, one could easily compute a sequence by picking
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adversarially for one data model, and in favour of some other data model when breaking

ties.

It is conceivable that adversarial sequences might be useful for detecting relationships between

compression algorithms, or for analysing properties of a black-box compressor (an unknown

closed-source implementation). Detectable properties may include algorithm family, parame-

ter settings, and resource constraints.



Conclusions

This thesis reviewed various topics in lossless data compression, promoting an approach based

on probabilistic modelling and arithmetic coding. Contributions include novel algorithms for

losslessly compressing various kinds of input objects, and insights about existing compression

methods for sequences.

For building any compression system, this thesis recommends designing a probabilistic model

for the input data, defining an objective function that states the system’s purpose, and build-

ing an algorithm that optimises the expected objective given all knowledge (the model and all

available data). Separating the objective from the model is both elegant and useful, and pro-

vides a transparent way in which communication systems can be engineered and improved. In

this thesis, the chosen objective function was to minimise the transmission cost of the output,

and the algorithms used Bayesian inference and arithmetic coding.

Any probabilistic model specifies precisely which inputs it considers more probable than

others, and is therefore necessarily biased towards certain kinds of input data – this bias is

an unavoidable prerequisite for any form of compression. The aim behind intelligent models

is to make that bias as flexible as possible, at a minimal cost: intelligent compressors can

adapt to a wide variety of input data by learning from the data itself. Data compression

has been proposed as a way of measuring artificial intelligence (Mahoney, 1999) that is more

objective than a Turing test (Turing, 1950). The more intelligent the algorithm, the better it

compresses (and vice versa).1

A natural question is then how well a “maximally intelligent” compression method would

compress, and how such an algorithm might be constructed. The best possible compression

achievable on a computer system is the length of the smallest computer program that generates

the original data. This length is called the Kolmogorov complexity of the data (Kolmogorov,

1963, 1965, 1968; Solomonoff, 1964a). Unfortunately, Kolmogorov complexity (and hence also

the smallest program) is uncomputable, making it impossible to find a theoretically minimal

description of the input data with a computer.

Even if such a ‘minimal generating program’ could be inferred in practice, the decompressor

could offer no guarantees about its operation, resource usage or termination, as decompression

1This relationship is a primary motivation behind the Hutter prize (Hutter, 2006).
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involves executing an arbitrary computer program.2

As constructing a perfect general compressor is impossible, one may wonder how good our

existing technology is, and if it can be improved. On English text, the best compressors

currently yield an average of about 2 bits per symbol (see appendix A). Humans, as measured

by e.g. Shannon (1950) or Cover and King (1978), predict English text with an average of

1.3 bits per symbol. Such results suggest that a gap in compression effectiveness remains

between humans and machines, which innovations in probabilistic modelling and artificial

intelligence should aim to close.

Of course, the utility of a practical data compression system involves not only compression

effectiveness, but also compression efficiency (the speed of operation), resource usage (such as

memory or energy), and how these properties scale as a function of the message size. When

measured on these terms, machines easily win over humans: today’s existing technology can

communicate information much more effectively and efficiently than any human can. And

hopefully, the reach and benefits of this technology will keep expanding.

I hope this thesis may contribute to the understanding and development of increasingly ef-

fective ways to store and transmit information.

2It is possible to approximate the uncomputable answer by placing careful restrictions on the program space
that is being searched. Such an approach is explored by e.g. Hutter (2001, 2004), but remains computationally
impractical for most real-world problems, including data compression.
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Summary of contributions

Chapter 3 described an API for building compression algorithms based on arithmetic coding.

The library follows an object-oriented design, and contains interfaces and algorithms for

sampling, compression and inference; as well as implementations of many basic probability

distributions, along with generic compression and sampling algorithms. All the work in this

thesis was implemented with this API.

Chapter 4 described basic adaptive compression schemes for sequences, and contributed a

novel compression method based on Pólya trees. The chapter also gave proof that online and

header-payload compression, when implemented correctly, are mathematically equivalent.

Chapter 5 introduced generative models for data with various fundamental combinatorial in-

variances, including permutations, combinations, compositions, ordered partitions, sequences,

and multisets. Compression schemes for these structures were derived by factorising the mod-

els into conditional univariate probability distributions, allowing the data to be arithmetically

encoded in serialised form.

Chapter 6 contributed various insights into context-sensitive compression methods. For

example, it showed the connections between the PPM algorithm of Cleary and Witten (1984a)

and the Sequence Memoizer of Wood et al. (2009, 2011). It also gave a unified construction

that includes several other related algorithms, showed the effects of their parameter settings

and how to optimise them. It was shown that Deplump’s compression effectiveness stems from

the use of depth-dependent discount parameters rather than the use of unbounded depth.

Chapter 7 described methods for structurally compressing multisets of sequences based on a

tree transform and binomial (or Beta-binomial) arithmetic codes. The compression achieved

by this method exploits the disordered nature of the multisets, and therefore works even on

multisets of incompressible sequences.

Chapter 8 showed how compression can be generalised to minimise the transmission cost of

a message when the output symbols have different costs. The chapter also reviewed ways of

using the predictive distributions of sequence compressors to sample or generate adversarial

sequences. The properties of some of these sequences and the curious behaviours they in-

duce on the compression effectiveness of existing compression models were documented and

explored.

Appendix A contains an extensive comparison of compression algorithms on various stan-

dard corpora, especially PPM-like methods.
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Future directions

The goal of chapter 5 was to give a comprehensive treatment of compression methods for

basic combinatorial objects. There are several combinatorial structures that I wish I could

have included; for example, a proper treatment of (unordered) integer and multiset partitions.

An interesting generative model for integer partitions is given by the sampling formula by

Ewens (1972), which can be derived also from the Chinese restaurant process of Aldous

(1985). Unfortunately, I did not find a suitable factorisation into univariate variables for this

distribution, and therefore was unable to build a suitable arithmetic coding scheme.

It would be nice to extend the work on structural compression to contain generative models for

all combinatorial objects in the Twelvefold Way of Stanley (1986, section 1.9), also summarised

in Knuth (2005b, section 7.2.1.4).

A promising research direction for the context-sensitive sequence compressors of chapter 6

that was not pursued is the use of fanout-dependent parameters, i.e. discount and strength

parameters that are selected based on the number of unique symbols seen in the current

node of the context tree; such an approach appears to be used by the PPMII compressor of

e.g. Shkarin (2001a), and is motivated and described by Chen and Goodman (1998). Results

for a prototype compressor built on this principle are included in appendix A.

There are several other probabilistic ways of modelling sequences that were not pursued in

this thesis; examples include hidden Markov models and neural network models (Mnih and

Hinton, 2009). Each of these could be used for building compressors, however I am not aware if

these approaches have been tried. I attempted to include a fairly comprehensive comparison

of the compression effectiveness of different compression algorithms; most of these can be

found in appendix A.
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Compression results

This chapter documents the compression effectiveness of many compression algorithms on

files from several standard compression corpora. Most of these files were obtained from

http://corpus.canterbury.ac.nz/ (Bell et al., 1998).

A list of all files, their sizes and SHA-1 hashes can be found in Tables A.2 and A.3.

The results found in this chapter were independently produced: nothing was copied from

existing publications. For a result to qualify, each algorithm had to prove it could successfully

decompress the compressed output it produced; luckily, all tested algorithms passed this test

on all files. The compression rates were calculated based on the length of the compressed

output (in bytes); that means that any overheads of the algorithm (file headers, rounding

errors, padding to the next byte, etc.) are included in the numbers.

Hopefully, these numbers will help to compare these tested algorithms with each other, and

also with new, yet undiscovered algorithms in the future.

Limitations. For a compressor to be of practical use, the resource usage and runtime char-

acteristics of the algorithm are very important. These are not documented here, as many of

the tested algorithms are research prototypes whose resource usage could easily be improved.

Some of the modifications that are necessary for making an algorithm practical (such as

imposing memory limits, or guarding against overflow errors) can adversely impact the com-

pression effectiveness; these are trade-offs that any sensible implementation will necessarily

have to make.

The compression efficiency (speed of operation) varies significantly among the compressors

tested here. Some of the algorithms with the best compression effectiveness (notably those

from the PAQ family) are also very slow, and can take significantly longer to run than other

algorithms.
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Table A.1: Index of compression algorithms used in this thesis. Each row identifies one
concrete compression method.

Name Type Description

HC(en) HC A fixed Huffman code built for letter occurrences in English text.

CRP CRP A single, two-parameter Chinese Restaurant Process as described in sec-

tion 4.2.3 (with α=0 and β = 1
2), followed by arithmetic coding.

Polya Polya The Pólya Tree symbol compressor, as described in section 4.3.1.

MTF MTF Basic move-to-front encoding, followed by adaptive compression of the indices

(using arithmetic coding).

LZW LZW Unbounded memory LZW with uniform distribution over dictionary indices,

and arithmetic coding.

compress LZW Unix compress by Thomas et al. (1985). Version 4.0, compiled for Linux

Source: compress.c SHA-1: 290066c3a327521841fb25b3172c5a6dd9c22c08

pkzip LZ77 DEFLATE implementation by Katz and Burg (1993), for DOS.

Exec: pkzip.exe SHA-1: a3e401daa2bba1999d4a7c94f5d8099d2f053872

gzip LZ77 DEFLATE implementation by Gailly and Adler (1992), version 1.4 [Linux], open

source. gzip -9.

7zip LZMA 7-Zip compressor by Pavlov (2009), version 9.04 beta [Linux].

lzip LZMA Command line frontend by D́ıaz D́ıaz (2013) to the LZMA algorithm by Pavlov

(2011). lzip.

PPMA d PPM Standard PPM with escape method A and max. context depth D =d.

PPMD d PPM Standard PPM with escape method D and max. context depth D =d.

PPME d PPM Standard PPM with escape method E and max. context depth D =d.

BPPM PPM Finite depth PPM with blending, as defined in section 6.5.

BM-J d PPM BPPM with global parameters α=0.5 and β =0.75, see page 140.

BM-K d PPM BPPM with global parameters α=0.5 and β =0.85, see page 140.

DDA d PPM BPPM with 7 depth-dependent parameters:

α1 ... α7 = (14.67, 0.83, 0.44, -0.11, 0.21, -0.0038, 0.76)

β1 ... β7 = (0.006, 0.56, 0.74, 0.79, 0.87, 0.89, 0.94).

FDA d PPM BPPM with 4 fanout-dependent parameters:

α1 ... α4 = (0.5, 1, 2, 4)

β1 ... β4 = (0.739, 0.836, 0.835, 0.831).



187

Name Type Description

FDB d PPM BPPM with 6 fanout-dependent parameters:

α1 ... α6 = (0.5, 1, 2, 4, 5, 6)

β1 ... β6 = (0.769, 0.832, 0.843, 0.854, 0.804, 0.775, 0.818).

ppmz2 PPM PPMZ 2 by Bloom (1998), official implementation. [win32]

Exec: ppmz2.exe SHA-1: 82dd192344a3cc8baa6be2abaec4be504c751777

PPMII PPM Reference implementation of PPMII, by Shkarin (2006). [win32]

Exec: ppmd.exe SHA-1: f54e20319ba9a5fc2ff052721df264e419a211cb

SM-0 SM Deplump (my own implementation), with parameters α = 0 and β = 1
2 .

SM-JG SM Deplump (my own implementation), with parameters from Gasthaus (2010):

UKN, α = 0, β1 ... β5 = (0.62, 0.69, 0.74, 0.80, 0.95).

bzip2 BWT Open source compressor by Seward (2010), version 1.0.6 [Linux]. bzip2 -9.

CSE CSE Compression by substring enumeration (Dubé and Beaudoin, 2010), proto-

type.CSE

Exec: butterfly [Linux] SHA-1: 46f9f9ffecca28585e43f815a895a418add06568

CTW CTW Context tree weighting by Willems et al. (1993), official implementation.

Exec: ctw.exe [win32] SHA-1: 0e8ec17da921b5c841e56ea383c2fe7978991283

DMC DMC Dynamic Markov compression by Cormack (1993), official implementation.

Source: dmc.c [Linux] SHA-1: d2d574c6cecc39c7d2266b7b0616cb7df5b89592

lpaq1 PAQ Lightweight version of the PAQ compressor, by Mahoney (2007a). [Linux]

Source: lpaq1.cpp SHA-1: 1f056441997daee6f56500f7ab1cd26aa9373c4e

paq8l PAQ PAQ8L compressor by Mahoney (2007b). [Linux]

Source: paq8l.cpp SHA-1: 9b96c5b4beb787905689e77b3831ba0d891158c1

The family of dictionary compressors is described in section 2.3, with added detail for LZW

in section 2.3.1. BWT is covered in 2.4.2. The standard PPM variants are described in
section 6.3, and PPM escape methods are summarised in Table 6.2. BPPM and SM are
examined in sections 6.5 and 6.6. CSE, DMC, CTW and PAQ are not discussed in detail in
this thesis, but results and references to literature are provided. The keyword index contains
relevant pointers for each algorithm.
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Table A.2: Index of corpora for benchmarking file compression. The corpus of choice in
this thesis is the Canterbury corpus, but supplementary results for the Calgary corpus are
included to allow comparisons with results from older publications.

The Canterbury Corpus (Arnold and Bell, 1997)

File Size SHA-1 sum Description

alice29.txt 152089 37a087d23c8709e97aa45ece662faf3d07006a58 English text

asyoulik.txt 125179 fb7db2d0c1ba0a1be26fe1892a7f83bf01153770 Shakespeare

cp.html 24603 fc4c10407efe47f40eee55eba9bddffbe5948cf4 HTML source

fields.c 11150 31999f829d313a6c10314deba2854b23481ab346 C source

grammar.lsp 3721 12bf64bf1d4c1f1119bea24e7bebd3167389220d LISP source

kennedy.xls 1029744 bb3c73adde28228f9a311ddfee8f76aeccf83c4b Excel spreadsheet

lcet10.txt 426754 77331951a4e24cd6d6315aa41b2cbdda882f685d Technical writing

plrabn12.txt 481861 4575958b534bbe6e9d461b0b390300f54a5210cd Poetry

ptt5 513216 96f7ab3d975ea4d823cf30be7dad5827f45858e9 CCITT test set (fax)

sum 38240 076fb264487f2d6868e67919e1949dcb4560e423 SPARC executable

xargs.1 4227 777250a5ccf4fd95b48c1c9248ab82c2e0221913 GNU manual page

The Calgary Corpus (Bell et al., 1990)

File Size SHA-1 sum

bib 111261 3f86203a59b9d823c784f0414dd1920bcb62d067 Bibliography

book1 768771 673c583d45544003eb0edd57f32a683b3c414a18 Fiction book

book2 610856 b855cfafe7374942a0ae54c3bd90f0bce7b73fab Non-fiction book (troff)

geo 102400 5cf652cfcc8e556ffb5e118fc29bcffef0aa71ab Geophysical data

news 377109 afd9f190c621f45216a321485a543c00786bc76b USENET batch file

obj1 21504 d155a7f8c68d24e9914b3274d5b5a6aa720e8d58 VAX object code

obj2 246814 e02c588e271f242fd00ecc68a931d9c5485323a0 Apple Mac object code

paper1 53161 aef6dac8838b1e9b35a46a6c1ccf1876a63486b4 Technical paper

paper2 82199 93d9bf0d3b4eae5198cf589336b30af3d6607feb Technical paper

pic 513216 96f7ab3d975ea4d823cf30be7dad5827f45858e9 CCITT test set (fax)

progc 39611 66fa53f757f6474ad92b2ae52ef07981839dd14d C source

progl 71646 7f9723167476639998ece850b9fbe1e5587aed1c LISP source

progp 49379 22c59a4046cc52510a736582eae4bcdca4713411 PASCAL source

trans 93695 34322336c2c5b210fefc5b85517c65de1d184da5 TTY transcript

Other Files (various sources)

File Size SHA-1 sum

world192.txt 2473400 fe5b97b714b2abe91a5e64f4e9b4589f61a6a45e The CIA world fact book

shakespeare.txt 5283795 8ef376bc97ea79b1fa5dd1aaa10c4b5d82a1be95 All of Shakespeare’s works

kokoro.txt 484562 e906613d135c80f4ee7e9b053d7b3f79bfb56552 Japanese text
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Table A.3: Index of corpora for benchmarking compression of DNA sequences, mathematical
sequences and random sequences.

A DNA corpus (Grumbach and Tahi, 1993, 1994)

File Size SHA-1 sum

chmpxx.chr 121024 4b310bb85e086d1098e29f958aa37a8e4c3eeb32 Marchantia polymorphia chloroplast

chntxx.chr 155844 8148ecf34d93db8a3354bc2f1573600a399ac2e9 Tobacco chloroplast

hehcmv.chr 229354 51b4ce6294294c466645af51c0293a1b815426fc Human cytomegalovirus (AD 169)

humdyst.chr 38770 62cbac874cebd290a29cea2445099e318dc71910 Human dystrophin gene (Chr. X)

humghcs.chr 66495 47370ee77b896fb408365f4f826397d9fcfe1dd0 Human growth hormone, etc. (Chr. 17)

humhbb.chr 73309 ba15933f8acab487650d4bb497efd035bd62cca0 Human beta globin region (Chr. 11)

humhdab.chr 58864 352eaa6bff6a5f9b65b1e57a703af29d119aa0e8 Human contig seq. of 3 cosmids.

humprtb.chr 56737 884576c0a13da695b46d48473dd3c792121ed586 Human hypoxanthine phosphoribosyltransferase

mpomtcg.chr 186609 63c37ecacd9879d83bc1931be2ab731cb19ee4d3 Marchantia polymorpha mitochondrium

mtpacga.chr 100314 b4be16f9be6ca78fc0547220306b0cec9ff9c02a Podospora anserina mitochondrium

vaccg.chr 191737 0ed33634e294a416e151724de4b08f6637b55829 Vaccinia virus

Other Files (large Canterbury corpus)

File Size SHA-1 sum

E.coli 4638690 bea54298e17d5ef86ddb75ac71b5b74fadf2cb7d DNA of E.coli bacterium

pi.txt 1000000 e995509affabd68e36d0f8f4436cbc2b7541dee5 Decimal expansion of π

random.txt 100000 231f68a1c6d7cee7f1dbb1a5b66b67aa0be0f225 Uniformly distributed symbols
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Table A.4: Compression results of selected algorithms, in bits per symbol, on the files of
the Canterbury corpus (Arnold and Bell, 1997).
The compression rates were rounded to 3 decimal digits in the final step. Each table cell is
shaded to indicate how good the compression rate is relative to that of other compressors on
the same file.

worse ← → better

Method a
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i
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.
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.
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.
x
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1
0
.
t
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n
1
2
.
t
x
t

p
t
t
5

(
p
i
c
)

s
u
m

x
a
r
g
s
.
1

MTF 5.072 5.253 5.560 5.416 5.205 2.951 5.057 4.992 1.377 5.218 5.419

CRP 4.573 4.815 5.260 5.071 4.769 3.575 4.671 4.533 1.212 5.358 5.021

Polya 4.571 4.813 5.269 5.049 4.730 3.580 4.671 4.533 1.225 5.357 4.983

compress 3.274 3.514 3.680 3.562 3.898 2.412 3.058 3.378 0.970 4.205 4.427

LZW 3.164 3.400 3.537 3.410 3.696 2.414 2.955 3.186 0.937 4.035 4.238

pkzip 2.892 3.148 2.614 2.305 2.851 1.646 2.744 3.263 0.846 2.711 3.486

gzip 2.850 3.120 2.593 2.244 2.653 1.629 2.707 3.225 0.816 2.671 3.308

7zip 2.554 2.849 2.508 2.192 2.842 0.400 2.242 2.746 0.679 1.990 3.482

lzip 2.551 2.848 2.478 2.152 2.709 0.409 2.233 2.746 0.618 1.982 3.369

bzip2 2.272 2.529 2.479 2.180 2.758 1.012 2.019 2.417 0.776 2.701 3.335

DMC 2.385 2.643 2.687 2.401 2.844 1.414 2.128 2.483 0.817 3.034 3.505

CSE 2.192 2.493 2.555 2.276 2.750 0.891 1.928 2.283 0.772 3.024 3.494

CTW 2.075 2.322 2.307 1.990 2.384 1.009 1.832 2.185 0.796 2.571 2.962

P
P

M
,

α
=

0
,

β
=

0
.5 PPMD 1 4.573 4.815 5.263 5.077 4.773 3.576 4.672 4.533 1.212 5.365 5.027

PPMD 2 3.472 3.480 3.760 3.374 3.479 2.790 3.527 3.384 0.849 3.772 3.923

PPMD 3 2.694 2.777 2.679 2.381 2.634 1.701 2.738 2.804 0.824 3.052 3.191

PPMD 4 2.273 2.486 2.344 2.118 2.421 1.579 2.160 2.408 0.821 2.800 2.969

PPMD 5 2.177 2.431 2.288 2.063 2.369 1.544 1.952 2.293 0.822 2.742 2.952

PPMD 6 2.179 2.460 2.291 2.084 2.397 1.474 1.928 2.312 0.815 2.719 2.966

PPMD 7 2.209 2.500 2.303 2.085 2.414 1.539 1.954 2.370 0.816 2.719 2.983

PPMD 8 2.240 2.532 2.317 2.079 2.427 1.589 1.990 2.425 0.820 2.718 2.998

PPMD 9 2.265 2.551 2.331 2.090 2.427 1.608 2.023 2.466 0.820 2.723 3.005

PPMD 10 2.285 2.563 2.345 2.101 2.434 1.615 2.051 2.492 0.823 2.724 3.011

P
P

M
,

α
=

1
,

β
=

0 PPMA 1 4.573 4.814 5.264 5.083 4.807 3.576 4.671 4.533 1.213 5.381 5.051

PPMA 2 3.474 3.479 3.824 3.412 3.578 2.792 3.528 3.383 0.858 3.939 4.027

PPMA 3 2.704 2.791 2.838 2.480 2.784 2.115 2.745 2.804 0.862 3.296 3.380

PPMA 4 2.309 2.535 2.546 2.255 2.610 1.995 2.181 2.416 0.877 3.151 3.214

PPMA 5 2.243 2.524 2.505 2.216 2.580 1.969 1.998 2.326 0.885 3.140 3.208

: : : : : : : : : : : :
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Method a
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(
p
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)

s
u
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g
s
.
1

PPMA 6 2.264 2.578 2.512 2.244 2.610 1.906 1.996 2.378 0.879 3.122 3.221

PPMA 7 2.307 2.631 2.526 2.251 2.632 2.229 2.040 2.464 0.882 3.126 3.240

PPMA 8 2.349 2.672 2.541 2.249 2.647 2.407 2.090 2.541 0.886 3.138 3.251

PPMA 9 2.376 2.692 2.557 2.261 2.649 2.439 2.129 2.592 0.886 3.154 3.261

PPMA 10 2.397 2.704 2.571 2.272 2.655 2.447 2.160 2.622 0.889 3.158 3.267

P
P

M
,

α
=

0
,

β
=
−

0
.2

5 PPME 1 4.573 4.815 5.263 5.077 4.773 3.576 4.672 4.533 1.212 5.365 5.027

PPME 2 3.472 3.480 3.762 3.377 3.485 2.790 3.527 3.384 0.849 3.777 3.931

PPME 3 2.695 2.778 2.696 2.379 2.647 1.702 2.739 2.804 0.827 3.063 3.217

PPME 4 2.276 2.491 2.372 2.107 2.429 1.579 2.160 2.409 0.832 2.807 3.005

PPME 5 2.187 2.452 2.314 2.036 2.361 1.569 1.953 2.298 0.839 2.749 2.985

PPME 6 2.194 2.496 2.309 2.043 2.376 1.498 1.930 2.327 0.834 2.718 2.992

PPME 7 2.224 2.543 2.314 2.033 2.382 1.563 1.954 2.394 0.836 2.710 3.009

PPME 8 2.256 2.580 2.321 2.015 2.386 1.617 1.988 2.460 0.840 2.705 3.019

PPME 9 2.279 2.604 2.330 2.017 2.382 1.637 2.019 2.510 0.838 2.709 3.024

PPME 10 2.298 2.616 2.338 2.020 2.382 1.643 2.044 2.541 0.840 2.707 3.026

B
P

P
M

,
α

=
0
,

β
=

0
.5 BM-D 1 4.573 4.815 5.260 5.071 4.769 3.575 4.671 4.533 1.212 5.358 5.021

BM-D 2 3.467 3.473 3.750 3.359 3.459 2.789 3.524 3.382 0.849 3.783 3.899

BM-D 3 2.680 2.762 2.682 2.352 2.617 1.810 2.729 2.795 0.830 3.059 3.170

BM-D 4 2.259 2.475 2.352 2.065 2.395 1.764 2.146 2.392 0.836 2.804 2.962

BM-D 5 2.180 2.453 2.293 1.991 2.350 1.820 1.941 2.284 0.845 2.744 2.956

BM-D 6 2.211 2.532 2.303 2.004 2.384 1.829 1.931 2.333 0.844 2.732 2.988

BM-D 7 2.277 2.629 2.326 2.011 2.412 1.902 1.981 2.441 0.851 2.754 3.030

BM-D 8 2.351 2.714 2.353 2.020 2.449 1.954 2.052 2.558 0.859 2.771 3.070

BM-D 9 2.415 2.776 2.380 2.045 2.470 2.030 2.121 2.659 0.863 2.785 3.106

BM-D 10 2.471 2.820 2.405 2.071 2.494 2.106 2.185 2.734 0.870 2.800 3.132

B
P

P
M

,
α

=
0
.5

,
β

=
0
.7

5 BM-J 1 4.574 4.816 5.264 5.078 4.782 3.575 4.672 4.534 1.212 5.357 5.032

BM-J 2 3.470 3.478 3.751 3.384 3.483 2.790 3.525 3.383 0.848 3.781 3.908

BM-J 3 2.681 2.764 2.658 2.396 2.649 1.767 2.731 2.794 0.817 3.049 3.164

BM-J 4 2.242 2.447 2.303 2.096 2.399 1.677 2.142 2.381 0.804 2.766 2.915

BM-J 5 2.113 2.351 2.209 1.982 2.307 1.687 1.910 2.235 0.798 2.660 2.848

BM-J 6 2.073 2.336 2.181 1.944 2.288 1.650 1.847 2.209 0.788 2.602 2.826

BM-J 7 2.066 2.344 2.167 1.905 2.270 1.674 1.832 2.222 0.787 2.577 2.816

BM-J 8 2.069 2.354 2.159 1.873 2.264 1.677 1.833 2.244 0.789 2.552 2.816

BM-J 9 2.074 2.363 2.157 1.860 2.249 1.707 1.838 2.262 0.786 2.535 2.816

BM-J 10 2.082 2.369 2.156 1.850 2.245 1.736 1.847 2.277 0.787 2.525 2.816

: : : : : : : : : : : :
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)
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1

BM-J 11 2.090 2.375 2.158 1.847 2.242 1.765 1.854 2.287 0.790 2.514 2.818

BM-J 12 2.095 2.378 2.160 1.846 2.245 1.823 1.860 2.294 0.793 2.506 2.820

BM-J 13 2.100 2.381 2.161 1.845 2.247 1.883 1.866 2.299 0.795 2.498 2.822

BM-J 14 2.104 2.383 2.164 1.848 2.249 1.883 1.870 2.302 0.797 2.493 2.826

BM-J 15 2.107 2.385 2.166 1.849 2.251 1.883 1.874 2.303 0.799 2.491 2.828

BM-J 20 2.116 2.388 2.180 1.857 2.260 1.883 1.884 2.306 0.807 2.482 2.837

B
P

P
M

,
α

=
0
.5

,
β

=
0
.8

5 BM-K 1 4.574 4.816 5.266 5.083 4.790 3.575 4.672 4.534 1.212 5.357 5.040

BM-K 2 3.472 3.481 3.760 3.405 3.513 2.790 3.527 3.384 0.848 3.794 3.933

BM-K 3 2.687 2.771 2.676 2.435 2.702 1.754 2.735 2.796 0.816 3.076 3.210

BM-K 4 2.253 2.457 2.331 2.146 2.464 1.651 2.149 2.386 0.801 2.798 2.969

BM-K 5 2.122 2.356 2.239 2.036 2.371 1.648 1.919 2.239 0.793 2.691 2.903

BM-K 6 2.077 2.331 2.209 1.997 2.350 1.598 1.852 2.205 0.781 2.629 2.877

BM-K 7 2.063 2.328 2.192 1.955 2.331 1.608 1.831 2.207 0.780 2.600 2.863

BM-K 8 2.057 2.329 2.181 1.921 2.318 1.597 1.824 2.215 0.781 2.570 2.858

BM-K 9 2.054 2.330 2.174 1.904 2.300 1.614 1.821 2.222 0.777 2.549 2.852

BM-K 10 2.056 2.331 2.169 1.892 2.290 1.630 1.822 2.228 0.777 2.535 2.850

BM-K 11 2.058 2.333 2.167 1.883 2.285 1.647 1.823 2.232 0.778 2.519 2.846

BM-K 12 2.059 2.334 2.165 1.878 2.283 1.683 1.824 2.235 0.779 2.508 2.846

BM-K 13 2.061 2.334 2.162 1.874 2.281 1.717 1.825 2.237 0.781 2.498 2.845

BM-K 14 2.062 2.335 2.162 1.872 2.281 1.717 1.826 2.238 0.782 2.491 2.846

BM-K 15 2.063 2.335 2.161 1.870 2.279 1.717 1.826 2.239 0.783 2.486 2.846

BM-K 20 2.067 2.336 2.162 1.864 2.279 1.717 1.829 2.240 0.786 2.468 2.850

BM-K 25 2.068 2.337 2.165 1.863 2.281 1.717 1.830 2.240 0.790 2.460 2.852

BM-K 30 2.068 2.337 2.169 1.865 2.281 1.717 1.830 2.240 0.794 2.457 2.852

B
P

P
M

,
7

d
ep

th
-d

ep
.

p
ar

am
et

er
s DDA 1 4.572 4.814 5.257 5.065 4.762 3.575 4.671 4.533 1.212 5.367 5.013

DDA 2 3.467 3.474 3.742 3.360 3.459 2.790 3.524 3.382 0.848 3.784 3.884

DDA 3 2.679 2.761 2.654 2.382 2.638 1.768 2.729 2.793 0.818 3.064 3.153

DDA 4 2.241 2.446 2.289 2.063 2.378 1.672 2.139 2.382 0.807 2.765 2.886

DDA 5 2.113 2.349 2.207 1.968 2.296 1.667 1.910 2.236 0.800 2.672 2.835

DDA 6 2.070 2.326 2.180 1.933 2.283 1.612 1.845 2.206 0.788 2.613 2.814

DDA 7 2.056 2.320 2.178 1.912 2.273 1.612 1.826 2.201 0.786 2.603 2.814

DDA 8 2.049 2.317 2.173 1.889 2.268 1.591 1.818 2.203 0.787 2.582 2.812

DDA 9 2.045 2.315 2.170 1.881 2.255 1.598 1.813 2.203 0.782 2.568 2.811

DDA 10 2.043 2.314 2.168 1.873 2.249 1.604 1.812 2.203 0.781 2.558 2.809

DDA 15 2.041 2.313 2.160 1.857 2.240 1.640 1.804 2.204 0.784 2.519 2.805

: : : : : : : : : : : :
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(
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.
1

DDA 20 2.041 2.312 2.156 1.848 2.236 1.640 1.802 2.204 0.783 2.503 2.805

DDA 25 2.041 2.312 2.153 1.843 2.234 1.640 1.801 2.203 0.782 2.491 2.805

DDA 30 2.040 2.312 2.152 1.840 2.234 1.640 1.800 2.203 0.783 2.485 2.805

B
P

P
M

,
4

fa
n
o
u
t-

d
ep

.
p
ar

am
et

er
s FDA 1 4.574 4.816 5.266 5.083 4.790 3.575 4.672 4.534 1.212 5.357 5.042

FDA 2 3.473 3.483 3.761 3.419 3.519 2.793 3.527 3.384 0.848 3.799 3.946

FDA 3 2.690 2.773 2.677 2.445 2.690 1.754 2.736 2.798 0.814 3.085 3.221

FDA 4 2.252 2.452 2.319 2.137 2.434 1.652 2.151 2.387 0.798 2.788 2.954

FDA 5 2.114 2.343 2.214 2.015 2.331 1.650 1.913 2.232 0.790 2.669 2.875

FDA 6 2.065 2.315 2.178 1.968 2.307 1.601 1.840 2.192 0.778 2.600 2.843

FDA 7 2.048 2.312 2.158 1.923 2.283 1.612 1.815 2.191 0.776 2.567 2.828

FDA 8 2.042 2.315 2.147 1.885 2.270 1.601 1.807 2.200 0.776 2.534 2.822

FDA 9 2.041 2.318 2.141 1.866 2.253 1.618 1.804 2.210 0.772 2.513 2.818

FDA 10 2.045 2.322 2.137 1.853 2.247 1.635 1.806 2.219 0.772 2.498 2.818

FDA 11 2.049 2.325 2.136 1.847 2.242 1.652 1.809 2.226 0.773 2.484 2.816

FDA 12 2.053 2.328 2.136 1.843 2.242 1.689 1.812 2.231 0.775 2.473 2.818

FDA 13 2.056 2.329 2.135 1.840 2.245 1.725 1.815 2.235 0.776 2.465 2.818

FDA 14 2.059 2.331 2.136 1.840 2.245 1.725 1.818 2.237 0.777 2.458 2.820

FDA 15 2.061 2.332 2.137 1.841 2.247 1.725 1.820 2.238 0.778 2.456 2.824

FDA 20 2.069 2.335 2.145 1.845 2.255 1.725 1.828 2.241 0.781 2.445 2.831

FDA 25 2.072 2.336 2.155 1.852 2.262 1.725 1.831 2.241 0.786 2.443 2.835

FDA 30 2.073 2.337 2.163 1.857 2.266 1.725 1.833 2.241 0.791 2.444 2.835

B
P

P
M

,
6

fa
n
o
u
t-

d
ep

.
p
ar

am
et

er
s FDB 1 4.574 4.816 5.266 5.083 4.790 3.575 4.672 4.534 1.212 5.357 5.042

FDB 2 3.474 3.484 3.761 3.422 3.519 2.793 3.527 3.384 0.848 3.801 3.948

FDB 3 2.691 2.774 2.678 2.450 2.696 1.754 2.737 2.798 0.813 3.090 3.227

FDB 4 2.253 2.453 2.322 2.145 2.442 1.653 2.151 2.388 0.797 2.795 2.964

FDB 5 2.115 2.344 2.219 2.024 2.341 1.652 1.914 2.232 0.789 2.677 2.886

FDB 6 2.066 2.315 2.183 1.978 2.318 1.604 1.842 2.192 0.777 2.609 2.852

FDB 7 2.048 2.311 2.164 1.932 2.294 1.616 1.816 2.189 0.775 2.576 2.837

FDB 8 2.042 2.312 2.152 1.894 2.281 1.605 1.807 2.197 0.775 2.543 2.831

FDB 9 2.040 2.314 2.145 1.876 2.264 1.623 1.804 2.205 0.771 2.521 2.828

FDB 10 2.042 2.317 2.141 1.862 2.255 1.640 1.805 2.213 0.771 2.506 2.826

FDB 11 2.045 2.319 2.139 1.854 2.249 1.657 1.806 2.218 0.772 2.490 2.824

FDB 12 2.048 2.322 2.138 1.850 2.249 1.695 1.808 2.223 0.773 2.479 2.824

FDB 13 2.051 2.323 2.136 1.846 2.249 1.733 1.810 2.226 0.774 2.470 2.824

FDB 14 2.053 2.324 2.136 1.845 2.249 1.733 1.813 2.228 0.775 2.464 2.826

FDB 15 2.055 2.325 2.137 1.845 2.251 1.733 1.814 2.229 0.777 2.460 2.828

: : : : : : : : : : : :
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Method a
l
i
c
e
2
9
.
t
x
t

a
s
y
o
u
l
i
k
.
t
x
t

c
p
.
h
t
m
l

f
i
e
l
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s
.
c

g
r
a
m
m
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r
.
l
s
p

k
e
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n
e
d
y
.
x
l
s

l
c
e
t
1
0
.
t
x
t

p
l
r
a
b
n
1
2
.
t
x
t

p
t
t
5

(
p
i
c
)

s
u
m

x
a
r
g
s
.
1

FDB 20 2.062 2.328 2.143 1.846 2.257 1.733 1.820 2.231 0.779 2.448 2.835

FDB 25 2.064 2.329 2.150 1.851 2.262 1.733 1.823 2.231 0.783 2.444 2.839

FDB 30 2.065 2.329 2.157 1.855 2.264 1.733 1.824 2.232 0.788 2.444 2.839

SM-0 2.680 2.940 2.752 2.383 2.763 2.475 2.467 2.880 ? 2.755 3.280

SM-JG 2.049 2.314 2.154 1.829 2.234 1.615 1.806 2.215 ? 2.450 2.812

ppmz2 2.059 2.309 2.158 1.896 2.300 1.373 1.794 2.194 0.754 2.538 2.850

PPMII 2.033 2.308 2.139 1.845 2.268 1.168 1.791 2.202 0.757 2.327 2.852

lpaq1 1.955 2.197 2.087 1.832 2.298 0.294 1.683 2.106 0.680 2.221 2.867

paq8l 1.843 2.112 1.917 1.608 2.081 0.091 1.573 2.025 0.351 1.576 2.693

See Table A.1 for descriptions of the compression methods used here.

Table A.5: Compression results of selected algorithms in bits per symbol, on the files of the
Calgary corpus (Bell et al., 1990). The file pic of the Calgary corpus is identical to file ptt5

of the Canterbury corpus (see Table A.4), and therefore omitted here.

Method b
i
b

b
o
o
k
1

b
o
o
k
2

g
e
o

n
e
w
s

o
b
j
1

o
b
j
2

p
a
p
e
r
1

p
a
p
e
r
2

p
r
o
g
c

p
r
o
g
l

p
r
o
g
p

t
r
a
n
s

MTF 5.625 4.946 5.027 5.507 5.468 6.059 6.166 5.256 4.984 5.533 4.891 5.170 5.502

CRP 5.209 4.528 4.794 5.660 5.193 6.000 6.267 4.999 4.612 5.221 4.782 4.886 5.543

Polya 5.206 4.528 4.823 5.665 5.204 6.035 6.272 5.025 4.608 5.213 4.778 4.880 5.541

compress 3.346 3.455 3.284 6.076 3.864 5.226 4.170 3.774 3.519 3.866 3.031 3.112 3.265

LZW 3.223 3.172 3.054 5.856 3.630 5.015 4.041 3.640 3.382 3.707 2.926 2.984 3.138

pkzip 2.583 3.289 2.739 5.392 3.100 3.875 2.656 2.819 2.910 2.716 1.824 1.840 1.691

gzip 2.509 3.250 2.700 5.345 3.063 3.837 2.628 2.789 2.887 2.677 1.804 1.811 1.610

7z 2.208 2.717 2.225 4.153 2.533 3.519 2.001 2.604 2.656 2.543 1.680 1.687 1.441

lzip 2.199 2.717 2.224 4.185 2.521 3.506 1.991 2.598 2.655 2.532 1.666 1.671 1.420

bzip2 1.975 2.420 2.062 4.447 2.516 4.013 2.478 2.492 2.437 2.533 1.740 1.735 1.528

DMC 2.196 2.595 2.296 4.801 2.773 4.121 2.765 2.730 2.587 2.754 1.987 1.996 1.917

CSE 1.975 2.268 1.977 5.354 2.525 4.462 2.711 2.540 2.412 2.604 1.712 1.778 1.598

CTW 1.833 2.180 1.891 4.532 2.350 3.721 2.398 2.291 2.229 2.337 1.647 1.679 1.443

P
P

M
,

α
=

1
,

β
=

0 PPMA 1 5.209 4.528 4.794 5.669 5.193 6.042 6.270 5.001 4.613 5.223 4.783 4.887 5.544

PPMA 2 3.455 3.601 3.778 5.068 4.163 5.022 4.202 3.834 3.626 3.877 3.320 3.373 3.497

PPMA 3 2.664 2.901 2.898 5.367 3.307 4.627 3.289 2.958 2.884 2.984 2.407 2.313 2.386

PPMA 4 2.153 2.469 2.287 6.000 2.757 4.525 2.984 2.562 2.484 2.651 1.939 1.909 1.813

PPMA 5 2.002 2.333 2.068 6.083 2.581 4.517 2.811 2.480 2.408 2.593 1.816 1.846 1.643

: : : : : : : : : : : : : :
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Method b
i
b
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1
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o
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g
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o
b
j
1

o
b
j
2

p
a
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e
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1

p
a
p
e
r
2

p
r
o
g
c

p
r
o
g
l

p
r
o
g
p

t
r
a
n
s

PPMA 6 1.997 2.360 2.042 6.082 2.576 4.527 2.760 2.501 2.434 2.608 1.782 1.843 1.608

PPMA 7 2.024 2.427 2.070 6.083 2.605 4.537 2.759 2.530 2.479 2.626 1.771 1.851 1.590

PPMA 8 2.049 2.496 2.110 6.080 2.632 4.544 2.758 2.551 2.515 2.644 1.766 1.861 1.585

PPMA 9 2.070 2.544 2.145 6.081 2.652 4.550 2.750 2.566 2.538 2.657 1.767 1.869 1.592

PPMA 10 2.089 2.576 2.175 6.081 2.666 4.555 2.755 2.579 2.552 2.668 1.777 1.878 1.598

P
P

M
,

α
=

0
,

β
=

0
.5 PPMD 1 5.210 4.529 4.795 5.666 5.193 6.014 6.270 5.001 4.613 5.224 4.783 4.887 5.545

PPMD 2 3.451 3.601 3.775 4.652 4.150 4.536 4.092 3.818 3.619 3.841 3.316 3.356 3.487

PPMD 3 2.631 2.896 2.882 4.589 3.248 3.962 3.080 2.902 2.856 2.878 2.388 2.261 2.356

PPMD 4 2.088 2.452 2.253 4.714 2.634 3.807 2.725 2.460 2.422 2.485 1.889 1.828 1.750

PPMD 5 1.910 2.291 2.014 4.773 2.411 3.778 2.512 2.346 2.315 2.402 1.746 1.747 1.555

PPMD 6 1.884 2.291 1.969 4.775 2.379 3.784 2.449 2.351 2.322 2.404 1.701 1.732 1.507

PPMD 7 1.896 2.336 1.980 4.775 2.393 3.793 2.439 2.373 2.354 2.413 1.680 1.732 1.483

PPMD 8 1.916 2.388 2.009 4.773 2.413 3.798 2.434 2.390 2.384 2.428 1.670 1.737 1.473

PPMD 9 1.935 2.430 2.038 4.774 2.431 3.804 2.421 2.405 2.406 2.442 1.667 1.740 1.477

PPMD 10 1.953 2.458 2.064 4.773 2.443 3.808 2.424 2.418 2.421 2.453 1.675 1.747 1.480

P
P

M
,

α
=

0
,

β
=
−

0
.2

5 PPME 1 5.210 4.529 4.795 5.666 5.193 6.014 6.270 5.001 4.613 5.224 4.783 4.887 5.545

PPME 2 3.452 3.601 3.775 4.655 4.150 4.550 4.093 3.819 3.620 3.843 3.316 3.356 3.487

PPME 3 2.634 2.897 2.883 4.581 3.251 4.004 3.086 2.908 2.859 2.884 2.390 2.262 2.354

PPME 4 2.096 2.455 2.256 4.743 2.645 3.861 2.733 2.470 2.431 2.496 1.889 1.823 1.738

PPME 5 1.913 2.301 2.019 4.851 2.428 3.835 2.521 2.357 2.333 2.411 1.740 1.730 1.527

PPME 6 1.879 2.311 1.974 4.855 2.399 3.839 2.451 2.361 2.346 2.407 1.684 1.702 1.465

PPME 7 1.887 2.366 1.983 4.856 2.412 3.846 2.432 2.379 2.379 2.411 1.653 1.689 1.429

PPME 8 1.903 2.427 2.008 4.853 2.430 3.850 2.419 2.393 2.409 2.421 1.634 1.683 1.408

PPME 9 1.917 2.475 2.034 4.855 2.446 3.855 2.400 2.406 2.430 2.429 1.623 1.676 1.403

PPME 10 1.928 2.507 2.056 4.854 2.455 3.858 2.398 2.415 2.443 2.435 1.623 1.673 1.398

PPME 11 1.937 2.529 2.074 4.853 2.462 3.860 2.399 2.423 2.453 2.439 1.628 1.671 1.400

PPME 12 1.944 2.543 2.089 4.853 2.469 3.863 2.401 2.428 2.459 2.442 1.632 1.669 1.404

PPME 13 1.951 2.550 2.100 4.853 2.473 3.866 2.402 2.432 2.464 2.445 1.634 1.667 1.409

B
P

P
M

,
α

=
0
,

β
=

0
.5 BM-D 1 5.209 4.528 4.794 5.660 5.193 6.000 6.267 4.999 4.612 5.221 4.782 4.886 5.543

BM-D 2 3.444 3.599 3.773 4.670 4.145 4.547 4.086 3.807 3.611 3.830 3.310 3.347 3.477

BM-D 3 2.618 2.891 2.876 4.603 3.243 3.990 3.075 2.885 2.840 2.865 2.375 2.247 2.335

BM-D 4 2.079 2.443 2.247 4.894 2.638 3.849 2.716 2.448 2.412 2.476 1.872 1.800 1.710

BM-D 5 1.898 2.294 2.012 4.971 2.424 3.838 2.508 2.351 2.323 2.399 1.717 1.702 1.486

BM-D 6 1.873 2.322 1.980 5.018 2.406 3.865 2.456 2.381 2.361 2.417 1.666 1.680 1.414

BM-D 7 1.901 2.412 2.015 5.052 2.440 3.892 2.459 2.433 2.432 2.449 1.649 1.682 1.378

BM-D 8 1.940 2.518 2.074 5.052 2.485 3.912 2.472 2.485 2.505 2.488 1.646 1.690 1.363

BM-D 9 1.980 2.614 2.137 5.053 2.526 3.931 2.473 2.531 2.566 2.526 1.652 1.700 1.365

BM-D 10 2.018 2.692 2.197 5.053 2.559 3.946 2.492 2.569 2.614 2.559 1.670 1.713 1.372

: : : : : : : : : : : : : :
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B
P

P
M

,
α

=
0
.5

,
β

=
0
.7

5 BM-J 1 5.210 4.529 4.795 5.659 5.193 5.997 6.267 5.001 4.613 5.224 4.784 4.888 5.545

BM-J 2 3.449 3.600 3.774 4.620 4.147 4.492 4.083 3.814 3.615 3.839 3.316 3.355 3.486

BM-J 3 2.616 2.890 2.877 4.471 3.239 3.881 3.069 2.892 2.838 2.872 2.384 2.268 2.360

BM-J 4 2.059 2.430 2.239 4.533 2.615 3.684 2.686 2.433 2.388 2.456 1.878 1.817 1.750

BM-J 5 1.853 2.243 1.977 4.532 2.361 3.630 2.442 2.283 2.242 2.327 1.701 1.695 1.521

BM-J 6 1.787 2.202 1.896 4.536 2.287 3.622 2.351 2.245 2.207 2.284 1.616 1.639 1.426

BM-J 7 1.762 2.206 1.870 4.545 2.261 3.622 2.309 2.232 2.202 2.260 1.561 1.604 1.361

BM-J 8 1.753 2.225 1.865 4.542 2.252 3.621 2.282 2.227 2.208 2.251 1.520 1.576 1.317

BM-J 9 1.749 2.243 1.867 4.542 2.248 3.624 2.251 2.227 2.215 2.247 1.493 1.551 1.289

BM-J 10 1.749 2.258 1.873 4.541 2.246 3.626 2.240 2.229 2.221 2.246 1.478 1.534 1.266

BM-J 15 1.761 2.292 1.903 4.541 2.246 3.641 2.221 2.239 2.241 2.249 1.455 1.484 1.229

BM-J 20 1.775 2.296 1.916 4.542 2.249 3.653 2.221 2.246 2.248 2.259 1.458 1.472 1.229

B
P

P
M

,
α

=
0
.5

,
β

=
0
.8

5 BM-K 1 5.210 4.529 4.795 5.659 5.193 5.997 6.267 5.002 4.613 5.226 4.785 4.889 5.545

BM-K 2 3.453 3.600 3.775 4.613 4.148 4.500 4.088 3.822 3.618 3.849 3.321 3.363 3.492

BM-K 3 2.624 2.892 2.882 4.450 3.247 3.892 3.086 2.911 2.847 2.896 2.398 2.289 2.380

BM-K 4 2.074 2.434 2.247 4.465 2.631 3.692 2.708 2.461 2.403 2.489 1.901 1.850 1.785

BM-K 5 1.872 2.244 1.986 4.455 2.381 3.634 2.468 2.313 2.256 2.361 1.730 1.732 1.566

BM-K 6 1.806 2.197 1.902 4.454 2.304 3.622 2.377 2.271 2.215 2.315 1.646 1.677 1.475

BM-K 7 1.778 2.191 1.870 4.459 2.273 3.618 2.332 2.253 2.204 2.287 1.590 1.640 1.412

BM-K 8 1.763 2.198 1.858 4.455 2.258 3.614 2.301 2.241 2.201 2.273 1.548 1.609 1.368

BM-K 9 1.755 2.205 1.853 4.455 2.248 3.614 2.267 2.236 2.201 2.264 1.518 1.582 1.338

BM-K 10 1.750 2.212 1.852 4.454 2.241 3.613 2.252 2.233 2.202 2.258 1.500 1.562 1.312

BM-K 15 1.739 2.226 1.857 4.452 2.225 3.618 2.217 2.228 2.206 2.245 1.460 1.496 1.256

BM-K 20 1.741 2.229 1.862 4.452 2.220 3.624 2.205 2.228 2.209 2.246 1.449 1.472 1.237

BM-K 25 1.744 2.229 1.864 4.453 2.218 3.628 2.201 2.228 2.209 2.247 1.446 1.459 1.230

BM-K 30 1.745 2.229 1.865 4.453 2.218 3.631 2.202 2.228 2.210 2.248 1.446 1.454 1.226

B
P

P
M

,
7

d
ep

th
-d

ep
.

p
ar

am
et

er
s DDA 1 5.208 4.528 4.794 5.663 5.192 6.015 6.268 4.997 4.610 5.218 4.780 4.884 5.542

DDA 2 3.444 3.599 3.772 4.653 4.145 4.529 4.083 3.805 3.610 3.827 3.309 3.346 3.477

DDA 3 2.612 2.889 2.876 4.512 3.238 3.932 3.074 2.886 2.836 2.866 2.380 2.262 2.355

DDA 4 2.053 2.431 2.237 4.574 2.612 3.728 2.685 2.421 2.383 2.441 1.867 1.801 1.729

DDA 5 1.854 2.243 1.977 4.565 2.366 3.680 2.455 2.280 2.241 2.322 1.701 1.692 1.520

DDA 6 1.787 2.198 1.895 4.566 2.290 3.670 2.365 2.239 2.202 2.280 1.618 1.639 1.430

DDA 7 1.775 2.187 1.866 4.568 2.274 3.673 2.338 2.232 2.194 2.265 1.581 1.620 1.401

DDA 8 1.766 2.188 1.854 4.565 2.263 3.671 2.316 2.224 2.192 2.256 1.549 1.599 1.373

DDA 9 1.760 2.190 1.848 4.564 2.257 3.671 2.289 2.221 2.190 2.249 1.526 1.578 1.354

DDA 10 1.756 2.191 1.844 4.563 2.251 3.670 2.278 2.218 2.189 2.245 1.514 1.563 1.337

DDA 15 1.739 2.193 1.838 4.561 2.236 3.672 2.247 2.210 2.186 2.232 1.483 1.509 1.297

DDA 20 1.735 2.193 1.837 4.560 2.227 3.674 2.232 2.207 2.186 2.228 1.469 1.484 1.276

DDA 25 1.732 2.193 1.836 4.560 2.222 3.676 2.225 2.205 2.185 2.226 1.460 1.468 1.262

DDA 30 1.730 2.193 1.836 4.560 2.218 3.678 2.221 2.204 2.185 2.225 1.455 1.458 1.251

DDA 35 1.730 2.193 1.836 4.560 2.216 3.680 2.218 2.204 2.185 2.225 1.451 1.452 1.244

: : : : : : : : : : : : : :
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B
P

P
M

,
6

fa
n
o
u
t-

d
ep

.
p
ar

am
et

er
s FDB 1 5.211 4.529 4.795 5.659 5.193 5.997 6.267 5.003 4.614 5.226 4.784 4.889 5.545

FDB 2 3.457 3.601 3.775 4.611 4.148 4.495 4.087 3.825 3.621 3.852 3.323 3.367 3.495

FDB 3 2.629 2.893 2.882 4.437 3.245 3.880 3.091 2.918 2.853 2.902 2.398 2.300 2.389

FDB 4 2.078 2.434 2.247 4.447 2.625 3.670 2.704 2.460 2.405 2.486 1.898 1.852 1.788

FDB 5 1.868 2.239 1.980 4.439 2.367 3.608 2.457 2.303 2.250 2.347 1.721 1.726 1.556

FDB 6 1.793 2.185 1.891 4.441 2.282 3.595 2.359 2.253 2.203 2.297 1.630 1.664 1.456

FDB 7 1.760 2.175 1.856 4.448 2.247 3.590 2.310 2.231 2.188 2.265 1.570 1.622 1.386

FDB 8 1.743 2.181 1.841 4.445 2.230 3.586 2.276 2.219 2.185 2.249 1.524 1.588 1.336

FDB 9 1.734 2.189 1.835 4.445 2.220 3.586 2.241 2.213 2.186 2.239 1.492 1.560 1.303

FDB 10 1.729 2.197 1.834 4.443 2.213 3.585 2.225 2.211 2.187 2.234 1.473 1.538 1.276

FDB 11 1.725 2.204 1.835 4.443 2.208 3.586 2.215 2.210 2.189 2.229 1.461 1.520 1.259

FDB 12 1.722 2.209 1.837 4.442 2.206 3.588 2.208 2.209 2.191 2.227 1.452 1.504 1.246

FDB 13 1.721 2.213 1.840 4.441 2.203 3.589 2.202 2.210 2.194 2.225 1.445 1.491 1.237

FDB 14 1.722 2.216 1.842 4.441 2.202 3.589 2.197 2.210 2.195 2.225 1.440 1.483 1.229

FDB 15 1.722 2.218 1.845 4.442 2.201 3.591 2.192 2.211 2.197 2.225 1.437 1.475 1.223

FDB 20 1.729 2.222 1.853 4.442 2.199 3.597 2.186 2.214 2.201 2.230 1.433 1.456 1.213

FDB 25 1.735 2.222 1.857 4.442 2.200 3.600 2.187 2.217 2.203 2.234 1.436 1.449 1.215

FDB 30 1.739 2.222 1.859 4.442 2.202 3.603 2.190 2.218 2.204 2.237 1.440 1.448 1.217

SM-0 2.232 2.874 2.505 5.049 2.789 4.105 2.769 2.770 2.787 2.779 2.018 1.961 1.767

SM-JG 1.734 2.206 1.842 4.516 2.215 3.650 2.205 2.209 2.190 2.226 1.443 1.439 1.231

ppmz2 1.718 2.188 1.839 4.578 2.205 3.667 2.241 2.212 2.185 2.257 1.447 1.449 1.214

PPMII 1.726 2.185 1.827 4.317 2.188 3.506 2.160 2.190 2.173 2.198 1.437 1.445 1.222

lpaq1 1.664 2.108 1.715 3.986 2.062 3.494 1.961 2.094 2.080 2.100 1.345 1.362 1.145

paq8l 1.500 2.006 1.596 3.438 1.907 2.787 1.456 1.970 1.994 1.923 1.187 1.157 0.995

See Table A.1 for descriptions of the compression methods used here.
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Table A.6: Compression results of selected algorithms in bits per symbol, on the files of
the DNA corpus by Grumbach and Tahi (1994). Only four symbols {a, g, c, t} occur in these
sequences, one for each nucleotide.

Method c
h
m
p
x
x
.
c
h
r

c
h
n
t
x
x
.
c
h
r

h
e
h
c
m
v
.
c
h
r

h
u
m
d
y
s
t
.
c
h
r

h
u
m
g
h
c
s
.
c
h
r

h
u
m
h
b
b
.
c
h
r

h
u
m
h
d
a
b
.
c
h
r

h
u
m
p
r
t
b
.
c
h
r

m
p
o
m
t
c
g
.
c
h
r

m
t
p
a
c
g
a
.
c
h
r

v
a
c
c
g
.
c
h
r

MTF 1.941 1.984 1.994 1.989 1.991 1.989 1.994 1.987 1.984 1.969 1.990

CRP 1.867 1.958 1.986 1.950 2.001 1.969 1.999 1.972 1.984 1.880 1.920

Polya 1.868 1.958 1.986 1.951 2.002 1.970 2.000 1.973 1.984 1.881 1.920

compr 2.091 2.187 2.199 2.233 2.194 2.201 2.207 2.202 2.202 2.116 2.136

LZW 2.011 2.104 2.124 2.144 2.102 2.111 2.114 2.110 2.126 2.044 2.062

pkzip 2.305 2.379 2.381 2.411 1.874 2.300 2.285 2.313 2.383 2.314 2.287

gzip 2.221 2.291 2.282 2.377 1.552 2.230 2.209 2.232 2.280 2.232 2.190

7z 2.080 2.161 2.163 2.224 1.144 2.074 2.018 2.055 2.126 2.094 2.066

lzip 2.095 2.172 2.152 2.226 1.131 2.053 2.014 2.070 2.144 2.092 2.062

bzip2 2.122 2.184 2.168 2.180 1.729 2.148 2.068 2.094 2.170 2.123 2.095

DMC 1.988 2.090 2.122 2.078 1.901 2.062 2.005 2.017 2.108 2.011 2.018

CSE 2.014 2.121 2.132 2.151 1.459 2.096 2.000 2.029 2.123 2.034 2.027

CTW 1.823 1.927 1.950 1.923 1.882 1.913 1.902 1.917 1.963 1.867 1.877

P
P

M
,

α
=

1
,

β
=

0 PPMA 1 1.867 1.957 1.986 1.949 2.001 1.969 1.999 1.972 1.984 1.880 1.919

PPMA 2 1.846 1.938 1.977 1.920 1.939 1.923 1.958 1.937 1.969 1.871 1.916

PPMA 3 1.844 1.935 1.970 1.921 1.935 1.919 1.945 1.928 1.965 1.871 1.910

PPMA 4 1.843 1.938 1.961 1.939 1.937 1.928 1.943 1.931 1.967 1.873 1.909

PPMA 5 1.862 1.953 1.971 1.988 1.954 1.955 1.963 1.956 1.981 1.893 1.921

PPMA 6 1.913 2.006 2.011 2.094 1.978 2.025 2.016 2.019 2.025 1.946 1.957

PPMA 7 1.994 2.112 2.104 2.218 1.953 2.140 2.077 2.097 2.128 2.031 2.034

PPMA 8 2.071 2.221 2.229 2.267 1.805 2.208 2.094 2.123 2.236 2.110 2.131

PPMA 9 2.117 2.272 2.290 2.273 1.655 2.209 2.084 2.121 2.266 2.155 2.186

PPMA 10 2.141 2.283 2.300 2.273 1.590 2.199 2.080 2.119 2.267 2.168 2.197

: : : : : : : : : : : :
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Method c
h
m
p
x
x
.
c
h
r

c
h
n
t
x
x
.
c
h
r

h
e
h
c
m
v
.
c
h
r

h
u
m
d
y
s
t
.
c
h
r

h
u
m
g
h
c
s
.
c
h
r

h
u
m
h
b
b
.
c
h
r

h
u
m
h
d
a
b
.
c
h
r

h
u
m
p
r
t
b
.
c
h
r

m
p
o
m
t
c
g
.
c
h
r

m
t
p
a
c
g
a
.
c
h
r

v
a
c
c
g
.
c
h
r

P
P

M
,

α
=

0
,

β
=

0
.5 PPMD 1 1.867 1.958 1.986 1.950 2.001 1.969 1.999 1.972 1.984 1.880 1.920

PPMD 2 1.847 1.938 1.977 1.921 1.940 1.924 1.959 1.938 1.969 1.872 1.916

PPMD 3 1.845 1.936 1.971 1.925 1.938 1.921 1.948 1.931 1.966 1.873 1.911

PPMD 4 1.848 1.943 1.964 1.953 1.947 1.936 1.953 1.942 1.971 1.879 1.912

PPMD 5 1.879 1.968 1.982 2.030 1.982 1.980 1.995 1.988 1.994 1.913 1.933

PPMD 6 1.961 2.050 2.044 2.194 2.051 2.092 2.099 2.098 2.065 2.000 1.992

PPMD 7 2.088 2.219 2.195 2.376 2.080 2.278 2.213 2.238 2.234 2.133 2.120

PPMD 8 2.192 2.369 2.381 2.414 1.939 2.364 2.227 2.262 2.390 2.244 2.266

PPMD 9 2.246 2.416 2.439 2.404 1.749 2.347 2.204 2.242 2.407 2.294 2.330

PPMD 10 2.268 2.416 2.434 2.399 1.653 2.324 2.193 2.234 2.397 2.299 2.327

PPMD 11 2.275 2.412 2.429 2.398 1.624 2.316 2.194 2.234 2.388 2.295 2.317

PPMD 12 2.277 2.411 2.427 2.398 1.622 2.315 2.199 2.237 2.386 2.292 2.313

PPMD 13 2.277 2.411 2.427 2.398 1.626 2.315 2.204 2.241 2.385 2.291 2.312

PPMD 14 2.277 2.411 2.427 2.398 1.634 2.315 2.209 2.245 2.385 2.291 2.312

PPMD 15 2.276 2.411 2.427 2.399 1.640 2.316 2.214 2.248 2.386 2.291 2.312

P
P

M
,

α
=

0
,

β
=
−

0
.2

5 PPME 1 1.867 1.957 1.986 1.950 2.001 1.969 1.999 1.972 1.984 1.880 1.920

PPME 2 1.847 1.938 1.977 1.921 1.940 1.924 1.958 1.938 1.969 1.872 1.916

PPME 3 1.845 1.936 1.970 1.925 1.937 1.921 1.947 1.931 1.966 1.872 1.911

PPME 4 1.847 1.942 1.964 1.951 1.946 1.935 1.952 1.941 1.970 1.878 1.912

PPME 5 1.877 1.966 1.981 2.027 1.979 1.977 1.992 1.985 1.992 1.911 1.932

PPME 6 1.957 2.046 2.041 2.193 2.047 2.088 2.095 2.095 2.062 1.996 1.989

PPME 7 2.091 2.217 2.192 2.402 2.084 2.283 2.227 2.250 2.231 2.138 2.118

PPME 8 2.227 2.403 2.400 2.515 1.952 2.420 2.302 2.333 2.419 2.282 2.285

PPME 9 2.326 2.523 2.535 2.565 1.743 2.473 2.328 2.367 2.517 2.380 2.408

PPME 10 2.382 2.577 2.596 2.578 1.624 2.474 2.329 2.372 2.556 2.423 2.464

PPME 11 2.406 2.592 2.612 2.579 1.581 2.469 2.329 2.373 2.558 2.436 2.481

PPME 12 2.416 2.595 2.614 2.580 1.572 2.468 2.332 2.375 2.557 2.438 2.483

PPME 13 2.420 2.595 2.614 2.580 1.571 2.467 2.335 2.377 2.556 2.439 2.482

: : : : : : : : : : : :
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Method c
h
m
p
x
x
.
c
h
r

c
h
n
t
x
x
.
c
h
r

h
e
h
c
m
v
.
c
h
r

h
u
m
d
y
s
t
.
c
h
r

h
u
m
g
h
c
s
.
c
h
r

h
u
m
h
b
b
.
c
h
r

h
u
m
h
d
a
b
.
c
h
r

h
u
m
p
r
t
b
.
c
h
r

m
p
o
m
t
c
g
.
c
h
r

m
t
p
a
c
g
a
.
c
h
r

v
a
c
c
g
.
c
h
r

B
P

P
M

,
α

=
0
,

β
=

0
.5 BM-D 1 1.867 1.958 1.986 1.950 2.001 1.969 1.999 1.972 1.984 1.880 1.920

BM-D 2 1.846 1.938 1.976 1.919 1.939 1.923 1.957 1.937 1.968 1.871 1.916

BM-D 3 1.843 1.934 1.969 1.919 1.934 1.917 1.943 1.926 1.964 1.870 1.910

BM-D 4 1.840 1.936 1.960 1.933 1.933 1.924 1.939 1.927 1.965 1.870 1.907

BM-D 5 1.856 1.947 1.967 1.979 1.946 1.948 1.954 1.947 1.975 1.886 1.917

BM-D 6 1.907 1.996 2.001 2.101 1.973 2.020 2.013 2.017 2.014 1.940 1.949

BM-D 7 2.025 2.123 2.099 2.325 1.992 2.181 2.152 2.165 2.128 2.065 2.040

BM-D 8 2.212 2.349 2.314 2.573 1.894 2.408 2.327 2.355 2.350 2.253 2.219

BM-D 9 2.403 2.588 2.568 2.741 1.736 2.583 2.453 2.498 2.572 2.446 2.439

BM-D 10 2.551 2.751 2.746 2.821 1.638 2.668 2.522 2.574 2.711 2.590 2.613

BM-D 11 2.650 2.831 2.836 2.853 1.598 2.703 2.553 2.611 2.774 2.678 2.707

BM-D 12 2.710 2.865 2.871 2.863 1.590 2.718 2.573 2.631 2.799 2.723 2.747

BM-D 15 2.769 2.883 2.889 2.869 1.618 2.731 2.608 2.663 2.819 2.758 2.767

BM-D 20 2.777 2.885 2.890 2.871 1.682 2.739 2.642 2.689 2.829 2.764 2.768

B
P

P
M

,
α

=
0
.5

,
β

=
0
.7

5 BM-J 1 1.867 1.958 1.986 1.950 2.001 1.970 2.000 1.973 1.984 1.880 1.920

BM-J 2 1.846 1.938 1.977 1.920 1.939 1.923 1.958 1.937 1.969 1.871 1.916

BM-J 3 1.843 1.934 1.969 1.919 1.933 1.917 1.943 1.926 1.964 1.870 1.910

BM-J 4 1.839 1.935 1.959 1.929 1.931 1.922 1.936 1.924 1.964 1.868 1.906

BM-J 5 1.851 1.943 1.964 1.962 1.935 1.938 1.942 1.935 1.971 1.880 1.913

BM-J 6 1.884 1.977 1.988 2.036 1.935 1.985 1.968 1.971 1.999 1.913 1.934

BM-J 7 1.945 2.053 2.050 2.136 1.894 2.067 2.008 2.025 2.068 1.975 1.985

BM-J 8 2.015 2.147 2.150 2.198 1.750 2.134 2.028 2.056 2.159 2.043 2.060

BM-J 9 2.067 2.208 2.218 2.225 1.586 2.154 2.030 2.066 2.201 2.092 2.118

BM-J 10 2.100 2.237 2.247 2.238 1.482 2.154 2.032 2.071 2.218 2.118 2.146

BM-J 15 2.143 2.260 2.271 2.248 1.331 2.145 2.040 2.080 2.222 2.143 2.165

BM-J 20 2.145 2.260 2.271 2.248 1.306 2.142 2.046 2.085 2.222 2.144 2.164

BM-J 25 2.145 2.260 2.270 2.248 1.305 2.141 2.050 2.088 2.222 2.144 2.164

BM-J 30 2.145 2.260 2.270 2.248 1.311 2.141 2.052 2.089 2.222 2.144 2.164

BM-J 40 2.145 2.260 2.270 2.248 1.324 2.141 2.053 2.090 2.223 2.144 2.164

BM-J 50 2.145 2.260 2.270 2.248 1.334 2.142 2.054 2.090 2.223 2.144 2.164

: : : : : : : : : : : :
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Method c
h
m
p
x
x
.
c
h
r

c
h
n
t
x
x
.
c
h
r

h
e
h
c
m
v
.
c
h
r

h
u
m
d
y
s
t
.
c
h
r

h
u
m
g
h
c
s
.
c
h
r

h
u
m
h
b
b
.
c
h
r

h
u
m
h
d
a
b
.
c
h
r

h
u
m
p
r
t
b
.
c
h
r

m
p
o
m
t
c
g
.
c
h
r

m
t
p
a
c
g
a
.
c
h
r

v
a
c
c
g
.
c
h
r

B
P

P
M

,
α

=
0
.5

,
β

=
0
.8

5 BM-K 1 1.867 1.958 1.986 1.950 2.002 1.970 2.000 1.973 1.984 1.881 1.920

BM-K 2 1.847 1.938 1.977 1.920 1.939 1.924 1.958 1.937 1.969 1.872 1.916

BM-K 3 1.843 1.934 1.969 1.919 1.934 1.917 1.943 1.926 1.964 1.870 1.910

BM-K 4 1.839 1.935 1.959 1.929 1.931 1.922 1.936 1.924 1.964 1.868 1.906

BM-K 5 1.850 1.942 1.963 1.960 1.935 1.938 1.941 1.934 1.971 1.879 1.913

BM-K 6 1.882 1.975 1.987 2.029 1.932 1.981 1.963 1.966 1.997 1.910 1.933

BM-K 7 1.936 2.046 2.044 2.114 1.886 2.054 1.993 2.010 2.062 1.965 1.979

BM-K 8 1.993 2.124 2.132 2.154 1.747 2.104 1.995 2.024 2.138 2.019 2.042

BM-K 9 2.028 2.164 2.178 2.165 1.596 2.107 1.984 2.019 2.159 2.052 2.081

BM-K 10 2.047 2.176 2.189 2.169 1.504 2.099 1.979 2.016 2.162 2.064 2.091

BM-K 15 2.068 2.185 2.198 2.174 1.359 2.084 1.979 2.017 2.156 2.072 2.094

BM-K 20 2.069 2.186 2.197 2.174 1.316 2.078 1.981 2.019 2.153 2.072 2.092

BM-K 30 2.070 2.186 2.197 2.174 1.293 2.074 1.984 2.021 2.152 2.072 2.092

BM-K 35 2.070 2.186 2.197 2.174 1.292 2.073 1.985 2.021 2.152 2.072 2.092

BM-K 40 2.070 2.186 2.196 2.174 1.294 2.073 1.985 2.021 2.152 2.072 2.092

BM-K 50 2.070 2.186 2.196 2.174 1.298 2.073 1.985 2.021 2.152 2.072 2.092

B
P

P
M

,
7

d
ep

th
-d

ep
.

p
ar

am
et

er
s DDA 1 1.868 1.959 1.986 1.953 2.003 1.971 2.002 1.975 1.985 1.882 1.920

DDA 2 1.847 1.938 1.977 1.920 1.939 1.924 1.958 1.938 1.969 1.872 1.916

DDA 3 1.843 1.934 1.969 1.919 1.934 1.918 1.944 1.927 1.964 1.870 1.910

DDA 4 1.840 1.935 1.959 1.931 1.933 1.923 1.938 1.926 1.965 1.869 1.907

DDA 5 1.851 1.943 1.964 1.964 1.937 1.940 1.944 1.937 1.972 1.881 1.914

DDA 6 1.888 1.980 1.990 2.043 1.941 1.989 1.974 1.977 2.001 1.917 1.936

DDA 7 1.930 2.039 2.040 2.105 1.885 2.047 1.985 2.003 2.056 1.959 1.975

DDA 8 1.972 2.099 2.109 2.125 1.758 2.077 1.973 2.001 2.113 1.999 2.022

DDA 9 1.992 2.120 2.135 2.123 1.635 2.069 1.954 1.987 2.118 2.018 2.043

DDA 10 2.000 2.121 2.134 2.123 1.570 2.059 1.947 1.981 2.112 2.020 2.040

DDA 15 2.005 2.120 2.133 2.124 1.479 2.046 1.945 1.980 2.103 2.017 2.032

DDA 20 2.006 2.120 2.132 2.124 1.437 2.041 1.945 1.980 2.100 2.016 2.031

DDA 30 2.006 2.120 2.132 2.124 1.394 2.034 1.945 1.980 2.098 2.016 2.030

DDA 40 2.006 2.120 2.131 2.124 1.375 2.031 1.945 1.980 2.097 2.015 2.029

DDA 50 2.006 2.120 2.131 2.124 1.367 2.029 1.945 1.980 2.097 2.015 2.029

: : : : : : : : : : : :
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Method c
h
m
p
x
x
.
c
h
r

c
h
n
t
x
x
.
c
h
r

h
e
h
c
m
v
.
c
h
r

h
u
m
d
y
s
t
.
c
h
r

h
u
m
g
h
c
s
.
c
h
r

h
u
m
h
b
b
.
c
h
r

h
u
m
h
d
a
b
.
c
h
r

h
u
m
p
r
t
b
.
c
h
r

m
p
o
m
t
c
g
.
c
h
r

m
t
p
a
c
g
a
.
c
h
r

v
a
c
c
g
.
c
h
r

B
P

P
M

,
6

fa
n
o
u
t-

d
ep

.
p
ar

am
et

er
s FDB 1 1.868 1.958 1.986 1.951 2.002 1.970 2.000 1.973 1.984 1.881 1.920

FDB 2 1.847 1.938 1.977 1.921 1.940 1.924 1.959 1.938 1.969 1.872 1.916

FDB 3 1.843 1.935 1.969 1.920 1.934 1.918 1.944 1.927 1.964 1.870 1.910

FDB 4 1.839 1.935 1.959 1.929 1.931 1.922 1.936 1.924 1.964 1.868 1.906

FDB 5 1.848 1.940 1.962 1.954 1.931 1.934 1.936 1.930 1.970 1.877 1.911

FDB 7 1.910 2.017 2.021 2.071 1.863 2.019 1.957 1.974 2.034 1.940 1.957

FDB 8 1.960 2.079 2.085 2.117 1.726 2.063 1.964 1.990 2.090 1.986 2.004

FDB 9 1.997 2.124 2.134 2.138 1.570 2.077 1.961 1.994 2.119 2.022 2.042

FDB 10 2.023 2.147 2.157 2.149 1.466 2.075 1.960 1.996 2.131 2.041 2.062

FDB 15 2.057 2.166 2.176 2.157 1.304 2.062 1.963 2.002 2.131 2.060 2.076

FDB 20 2.058 2.166 2.176 2.157 1.272 2.057 1.967 2.005 2.130 2.060 2.075

FDB 25 2.058 2.166 2.175 2.158 1.267 2.056 1.971 2.007 2.130 2.060 2.074

FDB 30 2.058 2.166 2.175 2.158 1.270 2.056 1.972 2.009 2.130 2.060 2.074

FDB 40 2.058 2.166 2.175 2.158 1.282 2.056 1.974 2.009 2.130 2.060 2.074

FDB 50 2.059 2.166 2.175 2.158 1.291 2.057 1.974 2.009 2.131 2.060 2.075

SM-0 2.778 2.885 2.891 2.871 1.922 2.753 2.677 2.711 2.841 2.769 2.775

SM-JG 2.071 2.187 2.198 2.176 1.344 2.079 1.989 2.026 2.158 2.074 2.095

PPMII 1.983 2.084 2.093 2.099 1.286 2.010 1.947 1.985 2.069 2.003 1.996

ppmz2 1.903 1.992 2.013 2.017 1.263 1.922 1.890 1.912 1.980 1.923 1.909

lpaq1 1.819 1.925 1.939 1.922 1.202 1.842 1.790 1.830 1.924 1.855 1.852

paq8l 1.816 1.924 1.919 1.927 1.201 1.839 1.783 1.821 1.923 1.851 1.847
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Figure A.1: Compression effectiveness of selected algorithms, in bits per symbol, on Shake-
speare’s works concatenated in plain text (shakespeare.txt). The plot shows how each
method’s (average) compression effectiveness changes as the file is being processed. For each
file position, a truncated version of the input file was made and compressed with each method.
The plot shows the length of the compressed output (in bits) divided by the length of the
truncated input (in bytes).
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Figure A.2: Progressive compression effectiveness of selected algorithms on world192.txt,
the CIA world fact book (part of the large Canterbury corpus).
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co
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input length (bytes)

Start: agcttttcattctgactgcaacgggcaatatgtctctgtgtggattaaaaaaagagtgtctgatagcagcttctgaactgg . . .

Figure A.3: Progressive compression effectiveness of selected algorithms on E.coli, the
complete genome of the bacterium Escherichia coli. The sequence is part of the large Can-
terbury corpus. See Figure A.4 for a comparison with random symbols.
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Start: cacagtgccatggggcgttttaggctgtaacgagtgaacgtccacattaggatagttaccgtgatctacggagggcgcgtg . . .

Figure A.4: Progressive compression effectiveness of selected algorithms on a uniformly
random sequence (Seq. XVII from chapter 8, page 176). The set of four symbols {a, c, g, t}
was chosen to match the nucleotide symbols of the E.coli sequence from Figure A.3.
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Start: 314159265358979323846264338327950288419716939937510582097494459230781640628620899 . . .

Figure A.5: Compression effectiveness of selected algorithms on the decimal expansion of π.
This sequence is part of the large Canterbury corpus. See Figure A.6 for a comparison with
random symbols.
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Start: 038405589322626260390363310876060577233495375475733086003913792144895901393360530 . . .

Figure A.6: Compression effectiveness of selected algorithms on a sequence of pseudo-
random, uniformly distributed decimal digits. See Figure A.5 for a comparison with the
decimal expansion of π.
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co
m

pr
es

si
o
n

ra
te

(b
it

s
p
er

by
te

)

1.5

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 10  100  1000  10000  100000

MTF
PPMD [D=1]
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Figure A.7: Progressive compression effectiveness of selected algorithms on Japanese novel
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Åberg, J. and Shtarkov, Yuri M. (1997). Text compression by context tree weighting. In

Proceedings of the Data Compression Conference, (edited by James A Storer and Martin

Cohn), 377–386. IEEE Computer Society. ISBN 978-0-8186-7761-8. ISSN 1068-0314.
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Telegraphisten. Hoffmann und Campe, Hamburg. URL http://books.google.com/

books?id=pqlAAAAAcAAJ.

Ghosh, Jayanta Kumar and Ramamoorthi, R. V. (2002). Bayesian Nonparametrics.

Springer Series in Statistics. Springer, New York. ISBN 978-0-387-95537-7.

Goblick, T. J., Jr and Holsinger, J. L. (1967). Analog source digitization: A comparison of

theory and practice (corresp.). IEEE Transactions on Information Theory, 13(2) 323–326.

ISSN 0018-9448.

Golomb, Solomon W. (1966). Run-length encodings. IEEE Transactions on Information

Theory, 12(3) 399–401. ISSN 0018-9448.

Gripon, Vincent, Rabbat, Michael, Skachek, Vitaly and Gross, Warren J. (2012). Com-

pressing multisets using tries. In Information Theory Workshop (ITW), 642–646. IEEE.

ISBN 978-1-4673-0224-1.

http://www.gnu.org/software/gzip/
http://www.gnu.org/software/gzip/
http://www.gatsby.ucl.ac.uk/~ucabjga/code/libplump/libplump-0.1.tar.gz
http://www.gatsby.ucl.ac.uk/~ucabjga/code/libplump/libplump-0.1.tar.gz
http://books.google.com/books?id=pqlAAAAAcAAJ
http://books.google.com/books?id=pqlAAAAAcAAJ


BIBLIOGRAPHY 213
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Zeckendorf, Édouard (1972). Représentation des nombres naturels par une somme de

nombres de Fibonacci ou de nombres de Lucas. Bulletin de la Société Royale des Sciences
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Dirichlet-multinomial code, 56–57, 75, 93

Dirichlet-multinomial distribution, 56–57, 75,

92

discrete cosine transform, 17, 207B

discrete uniform code, 51

DMC, 117, 168–178⋆, 187, 190–202T, 203–206⋆,

210B

DNA sequences, 189, 198–202T, 204⋆

Elias γ-code, 26, 211B

Elias ω-code, 28, 151, 211B

encryption, 15, 41

end-of-file symbol (EOF), 29, 42, 98, 129, 229

ensemble compressors, 139

entropy, 13, 16, 37–38

entropy coding ! , 40–41

enumerative coding, 80, 144, 210B, 218B

error correcting codes, 15

escape mechanism, see PPM

escape symbol (ESC), 113–114

Ewens’ sampling formula, 184, 211B, 213B

exchangeable sequences, 64

exclusion coding, 59–60, 85

expected value, 13

exponential Golomb codes, 28⋆, 27–28, 151

Fibonacci code, 28⋆, 29T, 28–29, 149–151

Fibonacci numbers, 28, 159

final page, 229

finite discrete codes, 51–52

footnotes∗, 17, 18, 23, 25, 29, 32, 39, 44, 45,

54, 59, 61, 65, 72, 73, 76, 83, 87, 91,

99, 103, 110, 113, 134, 144, 151, 159,

163, 181, 182, 225

∗not dissimilar to this one

full updates, 109T, 115

Gamma function Γ(·), 13, 54

geometric distribution, 26

golden ratio ϕ, 157–160

Golomb codes, 28, 50, 212B

gzip, 31, 36⋆, 68⋆, 168–178⋆, 186, 190–202T,

203–206⋆, 212B

header-payload compression, 73–77

hierarchical Dirichlet process, 65, 106–107

hierarchical Pitman–Yor process, 66, 132

histogram-building methods, 62–67

histograms, 63⋆, 68⋆

Huffman algorithm, 16, 24, 39, 213B

Huffman coding, 23, 34

Huffman coding, 36⋆

Huffman tree, 24

implicit probability distribution, 16, 22–23,

25, 28⋆, 38, 151

infinomial distribution, 56

information content, 13, 23, 37, 58

information entropy, 13, 16, 37–38

integer codes, 28⋆, 24–29

introduction to compression, 15–18

inverse probability, see Bayes’ theorem

Japanese text, 206⋆

JAVA source code, 45T, 46–49A, 53A

JPEG, 17, 214B

K-combinations, 85–86

K-compositions, 87–89

K-permutations, 84

keyword index, 224–228

KL-divergence, 13, 61, 151, 216B

Kneser–Ney smoothing, 66, 110, 111, 123, 136,

140, 141, 209, 210B, 215B

Kolmogorov complexity, 181, 215B
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Lagrange multiplier, 156–157

Laplace estimator, 64, 72

Levenshtein code, 28, 216B

log prob traces, 129T, 130, 131⋆, 138⋆

lossy compression, 17–18, 153

LZ77 algorithm, 30, 71, 223B

LZ78 algorithm, 30, 223B, see also LZW

LZMA, 31, 68⋆, 168–178⋆, 186, 190–202T, 203–

206⋆, 211B, 218B

LZW algorithm, 29–30, 31A, 36⋆, 68⋆, 164⋆,

168–178⋆, 186, 190–202T, 203–206⋆, 222B

macopt, 136, 216B

mixture models, 60

Morse code, 158T, 157–159, 160T

move-to-front encoding, 32–34, 36⋆, 64, 67,

68⋆, 186, 190–202T, 208B, 211B, 219B,

223B

MP3, 17, 214B

multinomial code, 55–56

multinomial compositions, 88–89

multinomial distribution, 55, 75

multiplicity function, 89

multiset combination code, 86, 93, 96

multisets, 89–95, 143–153

, 158

, 159

n-gram models, 105

nat (unit of information), 61

notation index, 11–13

omitted pages, 230–∞
1TPD, 66, 115, 165, see also shallow updates

online compression, 71–72, 75–77

optimal compression codes, 38–58

ordered structures

compositions, 86–89

ordered partitions, 95–96

permutations, 82–85

sequences, 96–100

sorted sequences, 99

PAQ, 18, 139, 179, 185, 215–217B

partitions, 95–96

permutations, 82–85

complete permutations, 82

truncated permutations, 84

π (numerical constant), 49, 205⋆

Pitman–Yor process, 65–67, 132–133

Poisson distribution, 91

Poisson processes, 91–92

Pólya tree compressor, 68⋆, 67–70, 190–202T,

204, 205⋆

power-law behaviour, 65–67

PPM, 34, 111–123

basic algorithm, 112–113

data structure, 111

escape mechanism, 113–123

probability estimation, 113–114

symbol exclusion, 114

trie construction, 112⋆, 112

update mechanism, 115

variants, 109T, 116T

BPPM, 66, 126⋆, 123–128, 130⋆, 164⋆,

168–178⋆, 190–202T, 203–206⋆

PPM*, 103, 108, 111, 116, 128, 210B

PPMA, 113–116, 120⋆, 186T, 190–202T, 210B

PPMB, 115–116, 210B

PPMC, 111, 115–116, 127, 128, 217B

PPMD, 36⋆, 115–116, 119, 120⋆, 127, 130⋆,

140, 168–178⋆, 190–202T, 203–206⋆, 213B

PPME, 115, 116, 120⋆, 190–202T, 207B

PPMG, 116, 119T, 119, 117–122

PPMII, 116, 128, 134, 140–141, 168–178⋆,

187, 190–202T, 203–206⋆, 220B

PPMZ, 187, 190–202T, 204⋆, 209B
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prefix codes, 22

prefix property, 22, 25, 150, 159

product coding, see sequential coding

Q-coder, 49, 218B

random distributions, 64, 67, 68⋆

random sequences, 36⋆, 68⋆, 164⋆, 168⋆, 170–

172⋆, 174–178⋆, 204, 205⋆

rejection sampling, 59

revised Morse code, 159T

rogue keyword, ← right here

rule of succession, see Laplace estimator

runtime costs, 140, 185

sampling, 68, 161, 162T

scatter plots, 131⋆, 138⋆

self-delimiting sequences, 148–151

Sequence Memoizer, 66, 103, 109T, 132–139,

164⋆, 168–178⋆, 190–202T, 212B, 223B

sequence termination, 98

sequences, 96–100

sequential coding, 58

sets, 100

SHA-1, 144–148, 218B

shallow updates, 107, 109T, 115, 165

Shannon entropy, 13, 16, 37–38

Shannon information, 13, 23, 37, 58

SM, see Sequence Memoizer

smoothing methods, 109

software

7zip (LZMA), 31, 186, 190–202T, 218B

butterfly (CSE), 168–178⋆, 187, 190–202T,

203–206⋆

bzip2 (BWT), 32–34, 36⋆, 68⋆, 168–178⋆,

187, 190–202T, 203–206⋆, 220B

compress (LZW), 30, 36⋆, 168–178⋆, 186,

190–202T, 203–206⋆, 221B

gzip (DEFLATE), 31, 36⋆, 68⋆, 168–178⋆,

186, 190–202T, 203–206⋆, 212B

lpaq1 (PAQ), 178⋆, 179, 187, 190–202T, 217B

lzip (LZMA), 68⋆, 168–178⋆, 186, 190–202T,

203–206⋆, 211B

paq8l (PAQ), 187, 190–202T, 217B

pkzip (DEFLATE), 31, 186, 190–202T, 215B

ppmz2 (PPM), 187, 190–202T, 204⋆

source alphabet, 21

stationary sources, 76

strike-one-off encoding, 74

structural compression, 79–101

submultisets, 93, 145

symbol coding, 22A, 22–23

target alphabet, 21

target distribution, 155

trie (data structure), 111, 112⋆

truncated permutations, 84

twelvefold way, 184, 215B, 221B

UKN, 110, 133, 134, see also Deplump

unary code, 25, 27, 28⋆, 57

Unicode, 15, 222B

unicorn,

uniform

constrained bit strings, 80

integer compositions, 87

integer K-compositions, 88

sets, 100

unordered structures

combinations, 85–86

multisets, 89–95

sets, 100

update exclusions, 115

vine pointers, 111

Z-coder, 28, 50, 209B

Zeckendorf representation, 29, 223B
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zero frequency problem, 110, 210B, 223B

ZIP file format, 31, 116, 219B



. . . AND HERE IT ENDS 229

“WHAT an age of wonders is this! When one considers the state of Science a century

ago, and compares the light of the past with that of the present day—how great is the

change! how marvellous the advance! Discovery has followed discovery in rapid succes-

sion—invention has superseded invention—till it would seem to the superficial observer

that little now remains to be discovered, and that further improvement is next to an

impossibility.”

—— Edward Highton (1852)

‘The Electric Telegraph: Introduction’

EOF
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